opencv/modules/core/src/stat.cpp

1561 lines
49 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
template<typename T> static inline Scalar rawToScalar(const T& v)
{
Scalar s;
typedef typename DataType<T>::channel_type T1;
int i, n = DataType<T>::channels;
for( i = 0; i < n; i++ )
s.val[i] = ((T1*)&v)[i];
return s;
}
/****************************************************************************************\
* sum *
\****************************************************************************************/
template<typename T, typename WT, typename ST, int BLOCK_SIZE>
static Scalar sumBlock_( const Mat& srcmat )
{
assert( DataType<T>::type == srcmat.type() );
Size size = getContinuousSize( srcmat );
ST s0 = 0;
WT s = 0;
int y, remaining = BLOCK_SIZE;
for( y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
int x = 0;
while( x < size.width )
{
int limit = std::min( remaining, size.width - x );
remaining -= limit;
limit += x;
for( ; x <= limit - 4; x += 4 )
{
s += src[x];
s += src[x+1];
s += src[x+2];
s += src[x+3];
}
for( ; x < limit; x++ )
s += src[x];
if( remaining == 0 || (x == size.width && y == size.height-1) )
{
s0 += s;
s = 0;
remaining = BLOCK_SIZE;
}
}
}
return rawToScalar(s0);
}
template<typename T, typename ST>
static Scalar sum_( const Mat& srcmat )
{
assert( DataType<T>::type == srcmat.type() );
Size size = getContinuousSize( srcmat );
ST s = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
s += src[x];
s += src[x+1];
s += src[x+2];
s += src[x+3];
}
for( ; x < size.width; x++ )
s += src[x];
}
return rawToScalar(s);
}
typedef Scalar (*SumFunc)(const Mat& src);
Scalar sum( const Mat& m )
{
static SumFunc tab[]=
{
sumBlock_<uchar, unsigned, double, 1<<24>,
sumBlock_<schar, int, double, 1<<24>,
sumBlock_<ushort, unsigned, double, 1<<16>,
sumBlock_<short, int, double, 1<<16>,
sum_<int, double>,
sum_<float, double>,
sum_<double, double>, 0,
sumBlock_<Vec<uchar, 2>, Vec<int, 2>, Vec<double, 2>, 1<<23>,
sumBlock_<Vec<schar, 2>, Vec<int, 2>, Vec<double, 2>, 1<<24>,
sumBlock_<Vec<ushort, 2>, Vec<int, 2>, Vec<double, 2>, 1<<15>,
sumBlock_<Vec<short, 2>, Vec<int, 2>, Vec<double, 2>, 1<<16>,
sum_<Vec<int, 2>, Vec<double, 2> >,
sum_<Vec<float, 2>, Vec<double, 2> >,
sum_<Vec<double, 2>, Vec<double, 2> >, 0,
sumBlock_<Vec<uchar, 3>, Vec<int, 3>, Vec<double, 3>, 1<<23>,
sumBlock_<Vec<schar, 3>, Vec<int, 3>, Vec<double, 3>, 1<<24>,
sumBlock_<Vec<ushort, 3>, Vec<int, 3>, Vec<double, 3>, 1<<15>,
sumBlock_<Vec<short, 3>, Vec<int, 3>, Vec<double, 3>, 1<<16>,
sum_<Vec<int, 3>, Vec<double, 3> >,
sum_<Vec<float, 3>, Vec<double, 3> >,
sum_<Vec<double, 3>, Vec<double, 3> >, 0,
sumBlock_<Vec<uchar, 4>, Vec<int, 4>, Vec<double, 4>, 1<<23>,
sumBlock_<Vec<schar, 4>, Vec<int, 4>, Vec<double, 4>, 1<<24>,
sumBlock_<Vec<ushort, 4>, Vec<int, 4>, Vec<double, 4>, 1<<15>,
sumBlock_<Vec<short, 4>, Vec<int, 4>, Vec<double, 4>, 1<<16>,
sum_<Vec<int, 4>, Vec<double, 4> >,
sum_<Vec<float, 4>, Vec<double, 4> >,
sum_<Vec<double, 4>, Vec<double, 4> >, 0
};
CV_Assert( m.channels() <= 4 );
2010-10-12 20:31:40 +08:00
SumFunc func = tab[m.type()];
CV_Assert( func != 0 );
2010-10-12 20:31:40 +08:00
if( m.dims > 2 )
{
const Mat* arrays[] = {&m, 0};
Mat planes[1];
NAryMatIterator it(arrays, planes);
Scalar s;
for( int i = 0; i < it.nplanes; i++, ++it )
s += func(it.planes[0]);
return s;
}
return func(m);
}
/****************************************************************************************\
* countNonZero *
\****************************************************************************************/
template<typename T>
static int countNonZero_( const Mat& srcmat )
{
//assert( DataType<T>::type == srcmat.type() );
const T* src = (const T*)srcmat.data;
size_t step = srcmat.step/sizeof(src[0]);
Size size = getContinuousSize( srcmat );
int nz = 0;
for( ; size.height--; src += step )
{
int x = 0;
for( ; x <= size.width - 4; x += 4 )
nz += (src[x] != 0) + (src[x+1] != 0) + (src[x+2] != 0) + (src[x+3] != 0);
for( ; x < size.width; x++ )
nz += src[x] != 0;
}
return nz;
}
typedef int (*CountNonZeroFunc)(const Mat& src);
int countNonZero( const Mat& m )
{
static CountNonZeroFunc tab[] =
{
countNonZero_<uchar>, countNonZero_<uchar>, countNonZero_<ushort>,
countNonZero_<ushort>, countNonZero_<int>, countNonZero_<float>,
countNonZero_<double>, 0
};
CountNonZeroFunc func = tab[m.depth()];
CV_Assert( m.channels() == 1 && func != 0 );
2010-10-12 20:31:40 +08:00
if( m.dims > 2 )
{
const Mat* arrays[] = {&m, 0};
Mat planes[1];
NAryMatIterator it(arrays, planes);
int nz = 0;
for( int i = 0; i < it.nplanes; i++, ++it )
nz += func(it.planes[0]);
return nz;
}
return func(m);
}
/****************************************************************************************\
* mean *
\****************************************************************************************/
template<typename T, typename WT, typename ST, int BLOCK_SIZE>
static Scalar meanBlock_( const Mat& srcmat, const Mat& maskmat )
{
assert( DataType<T>::type == srcmat.type() &&
CV_8U == maskmat.type() && srcmat.size() == maskmat.size() );
Size size = getContinuousSize( srcmat, maskmat );
ST s0 = 0;
WT s = 0;
int y, remaining = BLOCK_SIZE, pix = 0;
for( y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
int x = 0;
while( x < size.width )
{
int limit = std::min( remaining, size.width - x );
remaining -= limit;
limit += x;
for( ; x < limit; x++ )
if( mask[x] )
s += src[x], pix++;
if( remaining == 0 || (x == size.width && y == size.height-1) )
{
s0 += s;
s = 0;
remaining = BLOCK_SIZE;
}
}
}
return rawToScalar(s0)*(1./std::max(pix, 1));
}
template<typename T, typename ST>
static Scalar mean_( const Mat& srcmat, const Mat& maskmat )
{
assert( DataType<T>::type == srcmat.type() &&
CV_8U == maskmat.type() && srcmat.size() == maskmat.size() );
Size size = getContinuousSize( srcmat, maskmat );
ST s = 0;
int y, pix = 0;
for( y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
for( int x = 0; x < size.width; x++ )
if( mask[x] )
s += src[x], pix++;
}
return rawToScalar(s)*(1./std::max(pix, 1));
}
typedef Scalar (*MeanMaskFunc)(const Mat& src, const Mat& mask);
Scalar mean(const Mat& m)
{
2010-10-12 20:31:40 +08:00
return sum(m)*(1./m.total());
}
Scalar mean( const Mat& m, const Mat& mask )
{
static MeanMaskFunc tab[]=
{
meanBlock_<uchar, int, double, 1<<23>, 0,
meanBlock_<ushort, int, double, 1<<15>,
meanBlock_<short, int, double, 1<<16>,
mean_<int, double>,
mean_<float, double>,
mean_<double, double>, 0,
meanBlock_<Vec<uchar, 2>, Vec<int, 2>, Vec<double, 2>, 1<<23>, 0,
meanBlock_<Vec<ushort, 2>, Vec<int, 2>, Vec<double, 2>, 1<<15>,
meanBlock_<Vec<short, 2>, Vec<int, 2>, Vec<double, 2>, 1<<16>,
mean_<Vec<int, 2>, Vec<double, 2> >,
mean_<Vec<float, 2>, Vec<double, 2> >,
mean_<Vec<double, 2>, Vec<double, 2> >, 0,
meanBlock_<Vec<uchar, 3>, Vec<int, 3>, Vec<double, 3>, 1<<23>, 0,
meanBlock_<Vec<ushort, 3>, Vec<int, 3>, Vec<double, 3>, 1<<15>,
meanBlock_<Vec<short, 3>, Vec<int, 3>, Vec<double, 3>, 1<<16>,
mean_<Vec<int, 3>, Vec<double, 3> >,
mean_<Vec<float, 3>, Vec<double, 3> >,
mean_<Vec<double, 3>, Vec<double, 3> >, 0,
meanBlock_<Vec<uchar, 4>, Vec<int, 4>, Vec<double, 4>, 1<<23>, 0,
meanBlock_<Vec<ushort, 4>, Vec<int, 4>, Vec<double, 4>, 1<<15>,
meanBlock_<Vec<short, 4>, Vec<int, 4>, Vec<double, 4>, 1<<16>,
mean_<Vec<int, 4>, Vec<double, 4> >,
mean_<Vec<float, 4>, Vec<double, 4> >,
mean_<Vec<double, 4>, Vec<double, 4> >, 0
};
if( !mask.data )
return mean(m);
2010-10-12 20:31:40 +08:00
CV_Assert( m.channels() <= 4 && mask.type() == CV_8U );
MeanMaskFunc func = tab[m.type()];
CV_Assert( func != 0 );
2010-10-12 20:31:40 +08:00
if( m.dims > 2 )
{
const Mat* arrays[] = {&m, &mask, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
double total = 0;
Scalar s;
for( int i = 0; i < it.nplanes; i++, ++it )
{
int n = countNonZero(it.planes[1]);
s += mean(it.planes[0], it.planes[1])*(double)n;
total += n;
}
return (s * 1./std::max(total, 1.));
}
CV_Assert( m.size() == mask.size() );
return func( m, mask );
}
/****************************************************************************************\
* meanStdDev *
\****************************************************************************************/
template<typename T, typename SqT> struct SqrC1
{
typedef T type1;
typedef SqT rtype;
rtype operator()(type1 x) const { return (SqT)x*x; }
};
template<typename T, typename SqT> struct SqrC2
{
typedef Vec<T, 2> type1;
typedef Vec<SqT, 2> rtype;
rtype operator()(const type1& x) const { return rtype((SqT)x[0]*x[0], (SqT)x[1]*x[1]); }
};
template<typename T, typename SqT> struct SqrC3
{
typedef Vec<T, 3> type1;
typedef Vec<SqT, 3> rtype;
rtype operator()(const type1& x) const
{ return rtype((SqT)x[0]*x[0], (SqT)x[1]*x[1], (SqT)x[2]*x[2]); }
};
template<typename T, typename SqT> struct SqrC4
{
typedef Vec<T, 4> type1;
typedef Vec<SqT, 4> rtype;
rtype operator()(const type1& x) const
{ return rtype((SqT)x[0]*x[0], (SqT)x[1]*x[1], (SqT)x[2]*x[2], (SqT)x[3]*x[3]); }
};
template<> inline double SqrC1<uchar, double>::operator()(uchar x) const
{ return CV_SQR_8U(x); }
template<> inline Vec<double, 2> SqrC2<uchar, double>::operator()(const Vec<uchar, 2>& x) const
{ return Vec<double, 2>(CV_SQR_8U(x[0]), CV_SQR_8U(x[1])); }
template<> inline Vec<double, 3> SqrC3<uchar, double>::operator() (const Vec<uchar, 3>& x) const
{ return Vec<double, 3>(CV_SQR_8U(x[0]), CV_SQR_8U(x[1]), CV_SQR_8U(x[2])); }
template<> inline Vec<double, 4> SqrC4<uchar, double>::operator() (const Vec<uchar, 4>& x) const
{ return Vec<double, 4>(CV_SQR_8U(x[0]), CV_SQR_8U(x[1]), CV_SQR_8U(x[2]), CV_SQR_8U(x[3])); }
template<class SqrOp> static void
meanStdDev_( const Mat& srcmat, Scalar& _mean, Scalar& _stddev )
{
SqrOp sqr;
typedef typename SqrOp::type1 T;
typedef typename SqrOp::rtype ST;
typedef typename DataType<ST>::channel_type ST1;
assert( DataType<T>::type == srcmat.type() );
Size size = getContinuousSize( srcmat );
ST s = 0, sq = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T v = src[x];
s += v;
sq += sqr(v);
}
}
_mean = _stddev = Scalar();
double scale = 1./std::max(size.width*size.height, 1);
for( int i = 0; i < DataType<ST>::channels; i++ )
{
double t = ((ST1*)&s)[i]*scale;
_mean.val[i] = t;
_stddev.val[i] = std::sqrt(std::max(((ST1*)&sq)[i]*scale - t*t, 0.));
}
}
template<class SqrOp> static void
meanStdDevMask_( const Mat& srcmat, const Mat& maskmat,
Scalar& _mean, Scalar& _stddev )
{
SqrOp sqr;
typedef typename SqrOp::type1 T;
typedef typename SqrOp::rtype ST;
typedef typename DataType<ST>::channel_type ST1;
assert( DataType<T>::type == srcmat.type() &&
CV_8U == maskmat.type() &&
srcmat.size() == maskmat.size() );
Size size = getContinuousSize( srcmat, maskmat );
ST s = 0, sq = 0;
int pix = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
for( int x = 0; x < size.width; x++ )
if( mask[x] )
{
T v = src[x];
s += v;
sq += sqr(v);
pix++;
}
}
_mean = _stddev = Scalar();
double scale = 1./std::max(pix, 1);
for( int i = 0; i < DataType<ST>::channels; i++ )
{
double t = ((ST1*)&s)[i]*scale;
_mean.val[i] = t;
_stddev.val[i] = std::sqrt(std::max(((ST1*)&sq)[i]*scale - t*t, 0.));
}
}
typedef void (*MeanStdDevFunc)(const Mat& src, Scalar& mean, Scalar& stddev);
typedef void (*MeanStdDevMaskFunc)(const Mat& src, const Mat& mask,
Scalar& mean, Scalar& stddev);
void meanStdDev( const Mat& m, Scalar& mean, Scalar& stddev, const Mat& mask )
{
static MeanStdDevFunc tab[]=
{
meanStdDev_<SqrC1<uchar, double> >, 0,
meanStdDev_<SqrC1<ushort, double> >,
meanStdDev_<SqrC1<short, double> >,
meanStdDev_<SqrC1<int, double> >,
meanStdDev_<SqrC1<float, double> >,
meanStdDev_<SqrC1<double, double> >, 0,
meanStdDev_<SqrC2<uchar, double> >, 0,
meanStdDev_<SqrC2<ushort, double> >,
meanStdDev_<SqrC2<short, double> >,
meanStdDev_<SqrC2<int, double> >,
meanStdDev_<SqrC2<float, double> >,
meanStdDev_<SqrC2<double, double> >, 0,
meanStdDev_<SqrC3<uchar, double> >, 0,
meanStdDev_<SqrC3<ushort, double> >,
meanStdDev_<SqrC3<short, double> >,
meanStdDev_<SqrC3<int, double> >,
meanStdDev_<SqrC3<float, double> >,
meanStdDev_<SqrC3<double, double> >, 0,
meanStdDev_<SqrC4<uchar, double> >, 0,
meanStdDev_<SqrC4<ushort, double> >,
meanStdDev_<SqrC4<short, double> >,
meanStdDev_<SqrC4<int, double> >,
meanStdDev_<SqrC4<float, double> >,
meanStdDev_<SqrC4<double, double> >, 0
};
static MeanStdDevMaskFunc mtab[]=
{
meanStdDevMask_<SqrC1<uchar, double> >, 0,
meanStdDevMask_<SqrC1<ushort, double> >,
meanStdDevMask_<SqrC1<short, double> >,
meanStdDevMask_<SqrC1<int, double> >,
meanStdDevMask_<SqrC1<float, double> >,
meanStdDevMask_<SqrC1<double, double> >, 0,
meanStdDevMask_<SqrC2<uchar, double> >, 0,
meanStdDevMask_<SqrC2<ushort, double> >,
meanStdDevMask_<SqrC2<short, double> >,
meanStdDevMask_<SqrC2<int, double> >,
meanStdDevMask_<SqrC2<float, double> >,
meanStdDevMask_<SqrC2<double, double> >, 0,
meanStdDevMask_<SqrC3<uchar, double> >, 0,
meanStdDevMask_<SqrC3<ushort, double> >,
meanStdDevMask_<SqrC3<short, double> >,
meanStdDevMask_<SqrC3<int, double> >,
meanStdDevMask_<SqrC3<float, double> >,
meanStdDevMask_<SqrC3<double, double> >, 0,
meanStdDevMask_<SqrC4<uchar, double> >, 0,
meanStdDevMask_<SqrC4<ushort, double> >,
meanStdDevMask_<SqrC4<short, double> >,
meanStdDevMask_<SqrC4<int, double> >,
meanStdDevMask_<SqrC4<float, double> >,
meanStdDevMask_<SqrC4<double, double> >, 0
};
2010-10-12 20:31:40 +08:00
CV_Assert( m.channels() <= 4 && (mask.empty() || mask.type() == CV_8U) );
2010-10-12 20:31:40 +08:00
MeanStdDevFunc func = tab[m.type()];
MeanStdDevMaskFunc mfunc = mtab[m.type()];
CV_Assert( func != 0 || mfunc != 0 );
if( m.dims > 2 )
{
2010-10-12 20:31:40 +08:00
Scalar s, sq;
double total = 0;
const Mat* arrays[] = {&m, &mask, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
int k, cn = m.channels();
for( int i = 0; i < it.nplanes; i++, ++it )
{
Scalar _mean, _stddev;
double nz = (double)(mask.data ? countNonZero(it.planes[1]) : it.planes[0].rows*it.planes[0].cols);
if( func )
func(it.planes[0], _mean, _stddev);
else
mfunc(it.planes[0], it.planes[1], _mean, _stddev);
total += nz;
for( k = 0; k < cn; k++ )
{
s[k] += _mean[k]*nz;
sq[k] += (_stddev[k]*_stddev[k] + _mean[k]*_mean[k])*nz;
}
}
mean = stddev = Scalar();
total = 1./std::max(total, 1.);
for( k = 0; k < cn; k++ )
{
mean[k] = s[k]*total;
stddev[k] = std::sqrt(std::max(sq[k]*total - mean[k]*mean[k], 0.));
}
return;
}
2010-10-12 20:31:40 +08:00
if( mask.data )
{
2010-10-12 20:31:40 +08:00
CV_Assert( mask.size() == m.size() );
mfunc( m, mask, mean, stddev );
}
2010-10-12 20:31:40 +08:00
else
func( m, mean, stddev );
}
/****************************************************************************************\
* minMaxLoc *
\****************************************************************************************/
template<typename T> static void
minMaxIndx_( const Mat& srcmat, double* minVal, double* maxVal, int* minLoc, int* maxLoc )
{
assert( DataType<T>::type == srcmat.type() );
const T* src = (const T*)srcmat.data;
size_t step = srcmat.step/sizeof(src[0]);
T min_val = src[0], max_val = min_val;
int min_loc = 0, max_loc = 0;
int x, loc = 0;
Size size = getContinuousSize( srcmat );
for( ; size.height--; src += step, loc += size.width )
{
for( x = 0; x < size.width; x++ )
{
T val = src[x];
if( val < min_val )
{
min_val = val;
min_loc = loc + x;
}
else if( val > max_val )
{
max_val = val;
max_loc = loc + x;
}
}
}
*minLoc = min_loc;
*maxLoc = max_loc;
*minVal = min_val;
*maxVal = max_val;
}
template<typename T> static void
minMaxIndxMask_( const Mat& srcmat, const Mat& maskmat,
double* minVal, double* maxVal, int* minLoc, int* maxLoc )
{
assert( DataType<T>::type == srcmat.type() &&
CV_8U == maskmat.type() &&
srcmat.size() == maskmat.size() );
const T* src = (const T*)srcmat.data;
const uchar* mask = maskmat.data;
size_t step = srcmat.step/sizeof(src[0]);
size_t maskstep = maskmat.step;
T min_val = 0, max_val = 0;
int min_loc = -1, max_loc = -1;
int x = 0, y, loc = 0;
Size size = getContinuousSize( srcmat, maskmat );
for( y = 0; y < size.height; y++, src += step, mask += maskstep, loc += size.width )
{
for( x = 0; x < size.width; x++ )
if( mask[x] != 0 )
{
min_loc = max_loc = loc + x;
min_val = max_val = src[x];
break;
}
if( x < size.width )
break;
}
for( ; y < size.height; x = 0, y++, src += step, mask += maskstep, loc += size.width )
{
for( ; x < size.width; x++ )
{
T val = src[x];
int m = mask[x];
if( val < min_val && m )
{
min_val = val;
min_loc = loc + x;
}
else if( val > max_val && m )
{
max_val = val;
max_loc = loc + x;
}
}
}
*minLoc = min_loc;
*maxLoc = max_loc;
*minVal = min_val;
*maxVal = max_val;
}
typedef void (*MinMaxIndxFunc)(const Mat&, double*, double*, int*, int*);
typedef void (*MinMaxIndxMaskFunc)(const Mat&, const Mat&,
double*, double*, int*, int*);
void minMaxLoc( const Mat& img, double* minVal, double* maxVal,
Point* minLoc, Point* maxLoc, const Mat& mask )
{
2010-10-12 20:31:40 +08:00
CV_Assert(img.dims <= 2);
static MinMaxIndxFunc tab[] =
{minMaxIndx_<uchar>, 0, minMaxIndx_<ushort>, minMaxIndx_<short>,
minMaxIndx_<int>, minMaxIndx_<float>, minMaxIndx_<double>, 0};
static MinMaxIndxMaskFunc tabm[] =
{minMaxIndxMask_<uchar>, 0, minMaxIndxMask_<ushort>, minMaxIndxMask_<short>,
minMaxIndxMask_<int>, minMaxIndxMask_<float>, minMaxIndxMask_<double>, 0};
int depth = img.depth();
double minval=0, maxval=0;
int minloc=0, maxloc=0;
CV_Assert( img.channels() == 1 );
if( !mask.data )
{
MinMaxIndxFunc func = tab[depth];
CV_Assert( func != 0 );
func( img, &minval, &maxval, &minloc, &maxloc );
}
else
{
CV_Assert( img.size() == mask.size() && mask.type() == CV_8U );
MinMaxIndxMaskFunc func = tabm[depth];
CV_Assert( func != 0 );
func( img, mask, &minval, &maxval, &minloc, &maxloc );
}
if( minVal )
*minVal = minval;
if( maxVal )
*maxVal = maxval;
if( minLoc )
{
if( minloc >= 0 )
{
minLoc->y = minloc/img.cols;
minLoc->x = minloc - minLoc->y*img.cols;
}
else
minLoc->x = minLoc->y = -1;
}
if( maxLoc )
{
if( maxloc >= 0 )
{
maxLoc->y = maxloc/img.cols;
maxLoc->x = maxloc - maxLoc->y*img.cols;
}
else
maxLoc->x = maxLoc->y = -1;
}
}
2010-10-12 20:31:40 +08:00
static void ofs2idx(const Mat& a, size_t ofs, int* idx)
{
int i, d = a.dims;
for( i = 0; i < d; i++ )
{
idx[i] = (int)(ofs / a.step[i]);
ofs %= a.step[i];
}
}
void minMaxIdx(const Mat& a, double* minVal,
2010-10-12 20:31:40 +08:00
double* maxVal, int* minIdx, int* maxIdx,
const Mat& mask)
{
if( a.dims <= 2 )
{
Point minLoc, maxLoc;
minMaxLoc(a, minVal, maxVal, &minLoc, &maxLoc, mask);
if( minIdx )
minIdx[0] = minLoc.x, minIdx[1] = minLoc.y;
if( maxIdx )
maxIdx[0] = maxLoc.x, maxIdx[1] = maxLoc.y;
return;
}
const Mat* arrays[] = {&a, &mask, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
double minval = DBL_MAX, maxval = -DBL_MAX;
size_t minofs = 0, maxofs = 0, esz = a.elemSize();
for( int i = 0; i < it.nplanes; i++, ++it )
{
double val0 = 0, val1 = 0;
Point pt0, pt1;
minMaxLoc( it.planes[0], &val0, &val1, &pt0, &pt1, it.planes[1] );
if( val0 < minval )
{
minval = val0;
minofs = (it.planes[0].data - a.data) + pt0.x*esz;
}
if( val1 > maxval )
{
maxval = val1;
maxofs = (it.planes[0].data - a.data) + pt1.x*esz;
}
}
if( minVal )
*minVal = minval;
if( maxVal )
*maxVal = maxval;
if( minIdx )
ofs2idx(a, minofs, minIdx);
if( maxIdx )
ofs2idx(a, maxofs, maxIdx);
}
/****************************************************************************************\
* norm *
\****************************************************************************************/
template<typename T, typename WT=T> struct OpAbs
{
typedef T type1;
typedef WT rtype;
rtype operator()(type1 x) const { return (WT)std::abs(x); }
};
template<> inline uchar OpAbs<uchar, uchar>::operator()(uchar x) const { return x; }
template<> inline ushort OpAbs<ushort, ushort>::operator()(ushort x) const { return x; }
template<class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE>
static double normBlock_( const Mat& srcmat )
{
ElemFunc f;
UpdateFunc update;
GlobUpdateFunc globUpdate;
typedef typename ElemFunc::type1 T;
typedef typename UpdateFunc::rtype WT;
typedef typename GlobUpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat.depth() );
Size size = getContinuousSize( srcmat, srcmat.channels() );
ST s0 = 0; // luckily, 0 is the correct starting value for both + and max update operations
WT s = 0;
int y, remaining = BLOCK_SIZE;
for( y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
int x = 0;
while( x < size.width )
{
int limit = std::min( remaining, size.width - x );
remaining -= limit;
limit += x;
for( ; x <= limit - 4; x += 4 )
{
s = update(s, (WT)f(src[x]));
s = update(s, (WT)f(src[x+1]));
s = update(s, (WT)f(src[x+2]));
s = update(s, (WT)f(src[x+3]));
}
for( ; x < limit; x++ )
s = update(s, (WT)f(src[x]));
if( remaining == 0 || (x == size.width && y == size.height-1) )
{
s0 = globUpdate(s0, (ST)s);
s = 0;
remaining = BLOCK_SIZE;
}
}
}
return s0;
}
template<class ElemFunc, class UpdateFunc>
static double norm_( const Mat& srcmat )
{
ElemFunc f;
UpdateFunc update;
typedef typename ElemFunc::type1 T;
typedef typename UpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat.depth() );
Size size = getContinuousSize( srcmat, srcmat.channels() );
ST s = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
s = update(s, (ST)f(src[x]));
s = update(s, (ST)f(src[x+1]));
s = update(s, (ST)f(src[x+2]));
s = update(s, (ST)f(src[x+3]));
}
for( ; x < size.width; x++ )
s = update(s, (ST)f(src[x]));
}
return s;
}
template<class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE>
static double normMaskBlock_( const Mat& srcmat, const Mat& maskmat )
{
ElemFunc f;
UpdateFunc update;
GlobUpdateFunc globUpdate;
typedef typename ElemFunc::type1 T;
typedef typename UpdateFunc::rtype WT;
typedef typename GlobUpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat.depth() );
Size size = getContinuousSize( srcmat, maskmat );
ST s0 = 0;
WT s = 0;
int y, remaining = BLOCK_SIZE;
for( y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
int x = 0;
while( x < size.width )
{
int limit = std::min( remaining, size.width - x );
remaining -= limit;
limit += x;
for( ; x <= limit - 4; x += 4 )
{
if( mask[x] )
s = update(s, (WT)f(src[x]));
if( mask[x+1] )
s = update(s, (WT)f(src[x+1]));
if( mask[x+2] )
s = update(s, (WT)f(src[x+2]));
if( mask[x+3] )
s = update(s, (WT)f(src[x+3]));
}
for( ; x < limit; x++ )
{
if( mask[x] )
s = update(s, (WT)f(src[x]));
}
if( remaining == 0 || (x == size.width && y == size.height-1) )
{
s0 = globUpdate(s0, (ST)s);
s = 0;
remaining = BLOCK_SIZE;
}
}
}
return s0;
}
template<class ElemFunc, class UpdateFunc>
static double normMask_( const Mat& srcmat, const Mat& maskmat )
{
ElemFunc f;
UpdateFunc update;
typedef typename ElemFunc::type1 T;
typedef typename UpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat.depth() );
Size size = getContinuousSize( srcmat, maskmat );
ST s = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
s = update(s, (ST)f(src[x]));
if( mask[x+1] )
s = update(s, (ST)f(src[x+1]));
if( mask[x+2] )
s = update(s, (ST)f(src[x+2]));
if( mask[x+3] )
s = update(s, (ST)f(src[x+3]));
}
for( ; x < size.width; x++ )
{
if( mask[x] )
s = update(s, (ST)f(src[x]));
}
}
return s;
}
template<typename T, class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE>
static double normDiffBlock_( const Mat& srcmat1, const Mat& srcmat2 )
{
ElemFunc f;
UpdateFunc update;
GlobUpdateFunc globUpdate;
typedef typename UpdateFunc::rtype WT;
typedef typename GlobUpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat1.depth() );
Size size = getContinuousSize( srcmat1, srcmat2, srcmat1.channels() );
ST s0 = 0;
WT s = 0;
int y, remaining = BLOCK_SIZE;
for( y = 0; y < size.height; y++ )
{
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y);
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y);
int x = 0;
while( x < size.width )
{
int limit = std::min( remaining, size.width - x );
remaining -= limit;
limit += x;
for( ; x <= limit - 4; x += 4 )
{
s = update(s, (WT)f(src1[x] - src2[x]));
s = update(s, (WT)f(src1[x+1] - src2[x+1]));
s = update(s, (WT)f(src1[x+2] - src2[x+2]));
s = update(s, (WT)f(src1[x+3] - src2[x+3]));
}
for( ; x < limit; x++ )
s = update(s, (WT)f(src1[x] - src2[x]));
if( remaining == 0 || (x == size.width && y == size.height-1) )
{
s0 = globUpdate(s0, (ST)s);
s = 0;
remaining = BLOCK_SIZE;
}
}
}
return s0;
}
template<typename T, class ElemFunc, class UpdateFunc>
static double normDiff_( const Mat& srcmat1, const Mat& srcmat2 )
{
ElemFunc f;
UpdateFunc update;
typedef typename UpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat1.depth() );
Size size = getContinuousSize( srcmat1, srcmat2, srcmat1.channels() );
ST s = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y);
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
s = update(s, (ST)f(src1[x] - src2[x]));
s = update(s, (ST)f(src1[x+1] - src2[x+1]));
s = update(s, (ST)f(src1[x+2] - src2[x+2]));
s = update(s, (ST)f(src1[x+3] - src2[x+3]));
}
for( ; x < size.width; x++ )
s = update(s, (ST)f(src1[x] - src2[x]));
}
return s;
}
template<typename T, class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE>
static double normDiffMaskBlock_( const Mat& srcmat1, const Mat& srcmat2, const Mat& maskmat )
{
ElemFunc f;
UpdateFunc update;
GlobUpdateFunc globUpdate;
typedef typename UpdateFunc::rtype WT;
typedef typename GlobUpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat1.depth() );
Size size = getContinuousSize( srcmat1, srcmat2, maskmat );
ST s0 = 0;
WT s = 0;
int y, remaining = BLOCK_SIZE;
for( y = 0; y < size.height; y++ )
{
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y);
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
int x = 0;
while( x < size.width )
{
int limit = std::min( remaining, size.width - x );
remaining -= limit;
limit += x;
for( ; x <= limit - 4; x += 4 )
{
if( mask[x] )
s = update(s, (WT)f(src1[x] - src2[x]));
if( mask[x+1] )
s = update(s, (WT)f(src1[x+1] - src2[x+1]));
if( mask[x+2] )
s = update(s, (WT)f(src1[x+2] - src2[x+2]));
if( mask[x+3] )
s = update(s, (WT)f(src1[x+3] - src2[x+3]));
}
for( ; x < limit; x++ )
if( mask[x] )
s = update(s, (WT)f(src1[x] - src2[x]));
if( remaining == 0 || (x == size.width && y == size.height-1) )
{
s0 = globUpdate(s0, (ST)s);
s = 0;
remaining = BLOCK_SIZE;
}
}
}
return s0;
}
template<typename T, class ElemFunc, class UpdateFunc>
static double normDiffMask_( const Mat& srcmat1, const Mat& srcmat2, const Mat& maskmat )
{
ElemFunc f;
UpdateFunc update;
typedef typename UpdateFunc::rtype ST;
assert( DataType<T>::depth == srcmat1.depth() );
Size size = getContinuousSize( srcmat1, srcmat2, maskmat );
ST s = 0;
for( int y = 0; y < size.height; y++ )
{
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y);
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y);
const uchar* mask = maskmat.data + maskmat.step*y;
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
s = update(s, (ST)f(src1[x] - src2[x]));
if( mask[x+1] )
s = update(s, (ST)f(src1[x+1] - src2[x+1]));
if( mask[x+2] )
s = update(s, (ST)f(src1[x+2] - src2[x+2]));
if( mask[x+3] )
s = update(s, (ST)f(src1[x+3] - src2[x+3]));
}
for( ; x < size.width; x++ )
if( mask[x] )
s = update(s, (ST)f(src1[x] - src2[x]));
}
return s;
}
typedef double (*NormFunc)(const Mat& src);
typedef double (*NormDiffFunc)(const Mat& src1, const Mat& src2);
typedef double (*NormMaskFunc)(const Mat& src1, const Mat& mask);
typedef double (*NormDiffMaskFunc)(const Mat& src1, const Mat& src2, const Mat& mask);
double norm( const Mat& a, int normType )
{
static NormFunc tab[3][8] =
{
{
norm_<OpAbs<uchar>, OpMax<int> >,
norm_<OpAbs<schar>, OpMax<int> >,
norm_<OpAbs<ushort>, OpMax<int> >,
norm_<OpAbs<short, int>, OpMax<int> >,
norm_<OpAbs<int>, OpMax<int> >,
norm_<OpAbs<float>, OpMax<float> >,
norm_<OpAbs<double>, OpMax<double> >
},
{
normBlock_<OpAbs<uchar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normBlock_<OpAbs<schar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normBlock_<OpAbs<ushort>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normBlock_<OpAbs<short, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
norm_<OpAbs<int>, OpAdd<double> >,
norm_<OpAbs<float>, OpAdd<double> >,
norm_<OpAbs<double>, OpAdd<double> >
},
{
normBlock_<SqrC1<uchar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normBlock_<SqrC1<schar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
norm_<SqrC1<ushort, double>, OpAdd<double> >,
norm_<SqrC1<short, double>, OpAdd<double> >,
norm_<SqrC1<int, double>, OpAdd<double> >,
norm_<SqrC1<float, double>, OpAdd<double> >,
norm_<SqrC1<double, double>, OpAdd<double> >
}
};
normType &= 7;
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
NormFunc func = tab[normType >> 1][a.depth()];
CV_Assert(func != 0);
2010-10-12 20:31:40 +08:00
double r = 0;
if( a.dims > 2 )
{
const Mat* arrays[] = {&a, 0};
Mat planes[1];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
{
double n = func(it.planes[0]);
if( normType == NORM_INF )
r = std::max(r, n);
else
r += n;
}
}
else
r = func(a);
return normType == NORM_L2 ? std::sqrt(r) : r;
}
double norm( const Mat& a, int normType, const Mat& mask )
{
static NormMaskFunc tab[3][8] =
{
{
normMask_<OpAbs<uchar>, OpMax<int> >,
normMask_<OpAbs<schar>, OpMax<int> >,
normMask_<OpAbs<ushort>, OpMax<int> >,
normMask_<OpAbs<short, int>, OpMax<int> >,
normMask_<OpAbs<int>, OpMax<int> >,
normMask_<OpAbs<float>, OpMax<float> >,
normMask_<OpAbs<double>, OpMax<double> >
},
{
normMaskBlock_<OpAbs<uchar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normMaskBlock_<OpAbs<schar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normMaskBlock_<OpAbs<ushort>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normMaskBlock_<OpAbs<short, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normMask_<OpAbs<int>, OpAdd<double> >,
normMask_<OpAbs<float>, OpAdd<double> >,
normMask_<OpAbs<double>, OpAdd<double> >
},
{
normMaskBlock_<SqrC1<uchar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normMaskBlock_<SqrC1<schar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normMask_<SqrC1<ushort, double>, OpAdd<double> >,
normMask_<SqrC1<short, double>, OpAdd<double> >,
normMask_<SqrC1<int, double>, OpAdd<double> >,
normMask_<SqrC1<float, double>, OpAdd<double> >,
normMask_<SqrC1<double, double>, OpAdd<double> >
}
};
if( !mask.data )
return norm(a, normType);
normType &= 7;
CV_Assert((normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2) &&
2010-10-12 20:31:40 +08:00
mask.type() == CV_8U && a.channels() == 1);
NormMaskFunc func = tab[normType >> 1][a.depth()];
CV_Assert(func != 0);
2010-10-12 20:31:40 +08:00
double r = 0;
if( a.dims > 2 )
{
const Mat* arrays[] = {&a, &mask, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
{
double n = func(it.planes[0], it.planes[1]);
if( normType == NORM_INF )
r = std::max(r, n);
else
r += n;
}
}
else
{
CV_Assert( a.size() == mask.size() );
r = func(a, mask);
}
return normType == NORM_L2 ? std::sqrt(r) : r;
}
double norm( const Mat& a, const Mat& b, int normType )
{
static NormDiffFunc tab[3][8] =
{
{
normDiff_<uchar, OpAbs<int>, OpMax<int> >,
normDiff_<schar, OpAbs<int>, OpMax<int> >,
normDiff_<ushort, OpAbs<int>, OpMax<int> >,
normDiff_<short, OpAbs<int>, OpMax<int> >,
normDiff_<int, OpAbs<int>, OpMax<int> >,
normDiff_<float, OpAbs<float>, OpMax<float> >,
normDiff_<double, OpAbs<double>, OpMax<double> >
},
{
normDiffBlock_<uchar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normDiffBlock_<schar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normDiffBlock_<ushort, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiffBlock_<short, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiff_<int, OpAbs<int>, OpAdd<double> >,
normDiff_<float, OpAbs<float>, OpAdd<double> >,
normDiff_<double, OpAbs<double>, OpAdd<double> >
},
{
normDiffBlock_<uchar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiffBlock_<schar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiff_<ushort, SqrC1<int, double>, OpAdd<double> >,
normDiff_<short, SqrC1<int, double>, OpAdd<double> >,
normDiff_<int, SqrC1<int, double>, OpAdd<double> >,
normDiff_<float, SqrC1<float, double>, OpAdd<double> >,
normDiff_<double, SqrC1<double, double>, OpAdd<double> >
}
};
2010-10-12 20:31:40 +08:00
CV_Assert( a.type() == b.type() );
bool isRelative = (normType & NORM_RELATIVE) != 0;
normType &= 7;
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
NormDiffFunc func = tab[normType >> 1][a.depth()];
CV_Assert(func != 0);
2010-10-12 20:31:40 +08:00
double r = 0.;
if( a.dims > 2 )
{
const Mat* arrays[] = {&a, &b, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
{
double n = func(it.planes[0], it.planes[1]);
if( normType == NORM_INF )
r = std::max(r, n);
else
r += n;
}
}
else
{
CV_Assert( a.size() == b.size() );
r = func( a, b );
}
if( normType == NORM_L2 )
r = std::sqrt(r);
if( isRelative )
r /= norm(b, normType);
return r;
}
double norm( const Mat& a, const Mat& b, int normType, const Mat& mask )
{
static NormDiffMaskFunc tab[3][8] =
{
{
normDiffMask_<uchar, OpAbs<int>, OpMax<int> >,
normDiffMask_<schar, OpAbs<int>, OpMax<int> >,
normDiffMask_<ushort, OpAbs<int>, OpMax<int> >,
normDiffMask_<short, OpAbs<int>, OpMax<int> >,
normDiffMask_<int, OpAbs<int>, OpMax<int> >,
normDiffMask_<float, OpAbs<float>, OpMax<float> >,
normDiffMask_<double, OpAbs<double>, OpMax<double> >
},
{
normDiffMaskBlock_<uchar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normDiffMaskBlock_<schar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>,
normDiffMaskBlock_<ushort, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiffMaskBlock_<short, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiffMask_<int, OpAbs<int>, OpAdd<double> >,
normDiffMask_<float, OpAbs<float>, OpAdd<double> >,
normDiffMask_<double, OpAbs<double>, OpAdd<double> >
},
{
normDiffMaskBlock_<uchar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiffMaskBlock_<schar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>,
normDiffMask_<ushort, SqrC1<int, double>, OpAdd<double> >,
normDiffMask_<short, SqrC1<int, double>, OpAdd<double> >,
normDiffMask_<int, SqrC1<int, double>, OpAdd<double> >,
normDiffMask_<float, SqrC1<float, double>, OpAdd<double> >,
normDiffMask_<double, SqrC1<double, double>, OpAdd<double> >
}
};
if( !mask.data )
return norm(a, b, normType);
2010-10-12 20:31:40 +08:00
CV_Assert( a.type() == b.type() && mask.type() == CV_8U && a.channels() == 1);
bool isRelative = (normType & NORM_RELATIVE) != 0;
normType &= 7;
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
NormDiffMaskFunc func = tab[normType >> 1][a.depth()];
CV_Assert(func != 0);
2010-10-12 20:31:40 +08:00
double r = 0.;
if( a.dims > 2 )
{
const Mat* arrays[] = {&a, &b, &mask, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
{
double n = func(it.planes[0], it.planes[1], it.planes[2]);
if( normType == NORM_INF )
r = std::max(r, n);
else
r += n;
}
}
else
{
CV_Assert( a.size() == b.size() && a.size() == mask.size() );
r = func( a, b, mask );
}
if( normType == NORM_L2 )
r = std::sqrt(r);
if( isRelative )
r /= std::max(norm(b, normType, mask), DBL_EPSILON);
return r;
}
}
CV_IMPL CvScalar cvSum( const CvArr* srcarr )
{
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1));
if( CV_IS_IMAGE(srcarr) )
{
int coi = cvGetImageCOI((IplImage*)srcarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
sum = cv::Scalar(sum[coi-1]);
}
}
return sum;
}
CV_IMPL int cvCountNonZero( const CvArr* imgarr )
{
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
if( img.channels() > 1 )
cv::extractImageCOI(imgarr, img);
return countNonZero(img);
}
CV_IMPL CvScalar
cvAvg( const void* imgarr, const void* maskarr )
{
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr));
if( CV_IS_IMAGE(imgarr) )
{
int coi = cvGetImageCOI((IplImage*)imgarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
mean = cv::Scalar(mean[coi-1]);
}
}
return mean;
}
CV_IMPL void
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr )
{
cv::Scalar mean, sdv;
cv::Mat mask;
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask );
if( CV_IS_IMAGE(imgarr) )
{
int coi = cvGetImageCOI((IplImage*)imgarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
mean = cv::Scalar(mean[coi-1]);
sdv = cv::Scalar(sdv[coi-1]);
}
}
if( _mean )
*(cv::Scalar*)_mean = mean;
if( _sdv )
*(cv::Scalar*)_sdv = sdv;
}
CV_IMPL void
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal,
CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr )
{
cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1);
if( maskarr )
mask = cv::cvarrToMat(maskarr);
if( img.channels() > 1 )
cv::extractImageCOI(imgarr, img);
cv::minMaxLoc( img, _minVal, _maxVal,
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask );
}
CV_IMPL double
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr )
{
cv::Mat a, mask;
if( !imgA )
{
imgA = imgB;
imgB = 0;
}
a = cv::cvarrToMat(imgA, false, true, 1);
if( maskarr )
mask = cv::cvarrToMat(maskarr);
if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 )
cv::extractImageCOI(imgA, a);
if( !imgB )
return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask);
cv::Mat b = cv::cvarrToMat(imgB, false, true, 1);
if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 )
cv::extractImageCOI(imgB, b);
return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask);
}