opencv/modules/objdetect/src/aruco/charuco_detector.cpp

590 lines
30 KiB
C++
Raw Normal View History

2022-12-28 22:28:59 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "../precomp.hpp"
#include <opencv2/calib3d.hpp>
2023-09-20 17:27:07 +08:00
#include <opencv2/core/utils/logger.hpp>
2022-12-28 22:28:59 +08:00
#include "opencv2/objdetect/charuco_detector.hpp"
#include "aruco_utils.hpp"
namespace cv {
namespace aruco {
using namespace std;
struct CharucoDetector::CharucoDetectorImpl {
CharucoBoard board;
CharucoParameters charucoParameters;
ArucoDetector arucoDetector;
CharucoDetectorImpl(const CharucoBoard& _board, const CharucoParameters _charucoParameters,
const ArucoDetector& _arucoDetector): board(_board), charucoParameters(_charucoParameters),
arucoDetector(_arucoDetector)
{}
bool checkBoard(InputArrayOfArrays markerCorners, InputArray markerIds, InputArray charucoCorners, InputArray charucoIds) {
vector<Mat> mCorners;
markerCorners.getMatVector(mCorners);
2023-09-20 17:27:07 +08:00
const Mat& mIds = markerIds.getMat();
2023-09-20 17:27:07 +08:00
const Mat& chCorners = charucoCorners.getMat();
const Mat& chIds = charucoIds.getMat();
const vector<int>& boardIds = board.getIds();
2023-09-20 17:27:07 +08:00
const vector<vector<int> >& nearestMarkerIdx = board.getNearestMarkerIdx();
vector<Point2f> distance(board.getNearestMarkerIdx().size(), Point2f(0.f, std::numeric_limits<float>::max()));
// distance[i].x: max distance from the i-th charuco corner to charuco corner-forming markers.
// The two charuco corner-forming markers of i-th charuco corner are defined in getNearestMarkerIdx()[i]
// distance[i].y: min distance from the charuco corner to other markers.
for (size_t i = 0ull; i < chIds.total(); i++) {
int chId = chIds.ptr<int>(0)[i];
Point2f charucoCorner(chCorners.ptr<Point2f>(0)[i]);
for (size_t j = 0ull; j < mIds.total(); j++) {
int idMaker = mIds.ptr<int>(0)[j];
2023-09-20 17:27:07 +08:00
// skip the check if the marker is not in the current board.
if (find(boardIds.begin(), boardIds.end(), idMaker) == boardIds.end())
continue;
Point2f centerMarker((mCorners[j].ptr<Point2f>(0)[0] + mCorners[j].ptr<Point2f>(0)[1] +
mCorners[j].ptr<Point2f>(0)[2] + mCorners[j].ptr<Point2f>(0)[3]) / 4.f);
float dist = sqrt(normL2Sqr<float>(centerMarker - charucoCorner));
2023-09-20 17:27:07 +08:00
// nearestMarkerIdx contains for each charuco corner, nearest marker index in ids array
const int nearestMarkerId1 = boardIds[nearestMarkerIdx[chId][0]];
const int nearestMarkerId2 = boardIds[nearestMarkerIdx[chId][1]];
if (nearestMarkerId1 == idMaker || nearestMarkerId2 == idMaker) {
int nearestCornerId = nearestMarkerId1 == idMaker ? board.getNearestMarkerCorners()[chId][0] : board.getNearestMarkerCorners()[chId][1];
Point2f nearestCorner = mCorners[j].ptr<Point2f>(0)[nearestCornerId];
2023-09-20 17:27:07 +08:00
// distToNearest: distance from the charuco corner to charuco corner-forming markers
float distToNearest = sqrt(normL2Sqr<float>(nearestCorner - charucoCorner));
distance[chId].x = max(distance[chId].x, distToNearest);
// check that nearestCorner is nearest point
{
Point2f mid1 = (mCorners[j].ptr<Point2f>(0)[(nearestCornerId + 1) % 4]+nearestCorner)*0.5f;
Point2f mid2 = (mCorners[j].ptr<Point2f>(0)[(nearestCornerId + 3) % 4]+nearestCorner)*0.5f;
float tmpDist = min(sqrt(normL2Sqr<float>(mid1 - charucoCorner)), sqrt(normL2Sqr<float>(mid2 - charucoCorner)));
if (tmpDist < distToNearest)
return false;
}
}
// check distance from the charuco corner to other markers
else
distance[chId].y = min(distance[chId].y, dist);
}
// if distance from the charuco corner to charuco corner-forming markers more then distance from the charuco corner to other markers,
// then a false board is found.
if (distance[chId].x > 0.f && distance[chId].y < std::numeric_limits<float>::max() && distance[chId].x > distance[chId].y)
return false;
}
return true;
}
2022-12-28 22:28:59 +08:00
/** Calculate the maximum window sizes for corner refinement for each charuco corner based on the distance
* to their closest markers */
vector<Size> getMaximumSubPixWindowSizes(InputArrayOfArrays markerCorners, InputArray markerIds,
InputArray charucoCorners) {
size_t nCharucoCorners = charucoCorners.getMat().total();
CV_Assert(board.getNearestMarkerIdx().size() == nCharucoCorners);
vector<Size> winSizes(nCharucoCorners, Size(-1, -1));
for(size_t i = 0ull; i < nCharucoCorners; i++) {
if(charucoCorners.getMat().at<Point2f>((int)i) == Point2f(-1.f, -1.f)) continue;
if(board.getNearestMarkerIdx()[i].empty()) continue;
double minDist = -1;
int counter = 0;
// calculate the distance to each of the closest corner of each closest marker
for(size_t j = 0; j < board.getNearestMarkerIdx()[i].size(); j++) {
// find marker
int markerId = board.getIds()[board.getNearestMarkerIdx()[i][j]];
int markerIdx = -1;
for(size_t k = 0; k < markerIds.getMat().total(); k++) {
if(markerIds.getMat().at<int>((int)k) == markerId) {
markerIdx = (int)k;
break;
}
}
if(markerIdx == -1) continue;
Point2f markerCorner =
markerCorners.getMat(markerIdx).at<Point2f>(board.getNearestMarkerCorners()[i][j]);
Point2f charucoCorner = charucoCorners.getMat().at<Point2f>((int)i);
double dist = norm(markerCorner - charucoCorner);
if(minDist == -1) minDist = dist; // if first distance, just assign it
minDist = min(dist, minDist);
counter++;
}
// if this is the first closest marker, dont do anything
if(counter == 0)
continue;
else {
// else, calculate the maximum window size
int winSizeInt = int(minDist - 2); // remove 2 pixels for safety
if(winSizeInt < 1) winSizeInt = 1; // minimum size is 1
if(winSizeInt > 10) winSizeInt = 10; // maximum size is 10
winSizes[i] = Size(winSizeInt, winSizeInt);
}
}
return winSizes;
}
/** @brief From all projected chessboard corners, select those inside the image and apply subpixel refinement */
void selectAndRefineChessboardCorners(InputArray allCorners, InputArray image, OutputArray selectedCorners,
OutputArray selectedIds, const vector<Size> &winSizes) {
const int minDistToBorder = 2; // minimum distance of the corner to the image border
// remaining corners, ids and window refinement sizes after removing corners outside the image
vector<Point2f> filteredChessboardImgPoints;
vector<Size> filteredWinSizes;
vector<int> filteredIds;
// filter corners outside the image
Rect innerRect(minDistToBorder, minDistToBorder, image.getMat().cols - 2 * minDistToBorder,
image.getMat().rows - 2 * minDistToBorder);
for(unsigned int i = 0; i < allCorners.getMat().total(); i++) {
if(innerRect.contains(allCorners.getMat().at<Point2f>(i))) {
filteredChessboardImgPoints.push_back(allCorners.getMat().at<Point2f>(i));
filteredIds.push_back(i);
filteredWinSizes.push_back(winSizes[i]);
}
}
// if none valid, return 0
if(filteredChessboardImgPoints.empty()) return;
// corner refinement, first convert input image to grey
Mat grey;
if(image.type() == CV_8UC3)
cvtColor(image, grey, COLOR_BGR2GRAY);
else
grey = image.getMat();
//// For each of the charuco corners, apply subpixel refinement using its correspondind winSize
parallel_for_(Range(0, (int)filteredChessboardImgPoints.size()), [&](const Range& range) {
const int begin = range.start;
const int end = range.end;
for (int i = begin; i < end; i++) {
vector<Point2f> in;
in.push_back(filteredChessboardImgPoints[i] - Point2f(0.5, 0.5)); // adjust sub-pixel coordinates for cornerSubPix
Size winSize = filteredWinSizes[i];
if (winSize.height == -1 || winSize.width == -1)
winSize = Size(arucoDetector.getDetectorParameters().cornerRefinementWinSize,
arucoDetector.getDetectorParameters().cornerRefinementWinSize);
cornerSubPix(grey, in, winSize, Size(),
TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS,
arucoDetector.getDetectorParameters().cornerRefinementMaxIterations,
arucoDetector.getDetectorParameters().cornerRefinementMinAccuracy));
filteredChessboardImgPoints[i] = in[0] + Point2f(0.5, 0.5);
}
});
// parse output
Mat(filteredChessboardImgPoints).copyTo(selectedCorners);
Mat(filteredIds).copyTo(selectedIds);
}
/** Interpolate charuco corners using approximated pose estimation */
void interpolateCornersCharucoApproxCalib(InputArrayOfArrays markerCorners, InputArray markerIds,
InputArray image, OutputArray charucoCorners, OutputArray charucoIds) {
CV_Assert(image.getMat().channels() == 1 || image.getMat().channels() == 3);
CV_Assert(markerCorners.total() == markerIds.getMat().total());
// approximated pose estimation using marker corners
Mat approximatedRvec, approximatedTvec;
Mat objPoints, imgPoints; // object and image points for the solvePnP function
2023-04-21 05:43:03 +08:00
Board simpleBoard(board.getObjPoints(), board.getDictionary(), board.getIds());
simpleBoard.matchImagePoints(markerCorners, markerIds, objPoints, imgPoints);
2022-12-28 22:28:59 +08:00
if (objPoints.total() < 4ull) // need, at least, 4 corners
return;
solvePnP(objPoints, imgPoints, charucoParameters.cameraMatrix, charucoParameters.distCoeffs, approximatedRvec, approximatedTvec);
// project chessboard corners
vector<Point2f> allChessboardImgPoints;
projectPoints(board.getChessboardCorners(), approximatedRvec, approximatedTvec, charucoParameters.cameraMatrix,
charucoParameters.distCoeffs, allChessboardImgPoints);
// calculate maximum window sizes for subpixel refinement. The size is limited by the distance
// to the closes marker corner to avoid erroneous displacements to marker corners
vector<Size> subPixWinSizes = getMaximumSubPixWindowSizes(markerCorners, markerIds, allChessboardImgPoints);
// filter corners outside the image and subpixel-refine charuco corners
selectAndRefineChessboardCorners(allChessboardImgPoints, image, charucoCorners, charucoIds, subPixWinSizes);
}
/** Interpolate charuco corners using local homography */
void interpolateCornersCharucoLocalHom(InputArrayOfArrays markerCorners, InputArray markerIds, InputArray image,
OutputArray charucoCorners, OutputArray charucoIds) {
CV_Assert(image.getMat().channels() == 1 || image.getMat().channels() == 3);
CV_Assert(markerCorners.total() == markerIds.getMat().total());
size_t nMarkers = markerIds.getMat().total();
// calculate local homographies for each marker
vector<Mat> transformations(nMarkers);
vector<bool> validTransform(nMarkers, false);
const auto& ids = board.getIds();
for(size_t i = 0ull; i < nMarkers; i++) {
vector<Point2f> markerObjPoints2D;
int markerId = markerIds.getMat().at<int>((int)i);
auto it = find(ids.begin(), ids.end(), markerId);
if(it == ids.end()) continue;
auto boardIdx = it - ids.begin();
markerObjPoints2D.resize(4ull);
for(size_t j = 0ull; j < 4ull; j++)
markerObjPoints2D[j] =
Point2f(board.getObjPoints()[boardIdx][j].x, board.getObjPoints()[boardIdx][j].y);
transformations[i] = getPerspectiveTransform(markerObjPoints2D, markerCorners.getMat((int)i));
// set transform as valid if transformation is non-singular
double det = determinant(transformations[i]);
validTransform[i] = std::abs(det) > 1e-6;
}
size_t nCharucoCorners = (size_t)board.getChessboardCorners().size();
vector<Point2f> allChessboardImgPoints(nCharucoCorners, Point2f(-1, -1));
// for each charuco corner, calculate its interpolation position based on the closest markers
// homographies
for(size_t i = 0ull; i < nCharucoCorners; i++) {
Point2f objPoint2D = Point2f(board.getChessboardCorners()[i].x, board.getChessboardCorners()[i].y);
vector<Point2f> interpolatedPositions;
for(size_t j = 0ull; j < board.getNearestMarkerIdx()[i].size(); j++) {
int markerId = board.getIds()[board.getNearestMarkerIdx()[i][j]];
int markerIdx = -1;
for(size_t k = 0ull; k < markerIds.getMat().total(); k++) {
if(markerIds.getMat().at<int>((int)k) == markerId) {
markerIdx = (int)k;
break;
}
}
if (markerIdx != -1 &&
validTransform[markerIdx])
{
vector<Point2f> in, out;
in.push_back(objPoint2D);
perspectiveTransform(in, out, transformations[markerIdx]);
interpolatedPositions.push_back(out[0]);
}
}
// none of the closest markers detected
if(interpolatedPositions.empty()) continue;
// more than one closest marker detected, take middle point
if(interpolatedPositions.size() > 1ull) {
allChessboardImgPoints[i] = (interpolatedPositions[0] + interpolatedPositions[1]) / 2.;
}
// a single closest marker detected
else allChessboardImgPoints[i] = interpolatedPositions[0];
}
// calculate maximum window sizes for subpixel refinement. The size is limited by the distance
// to the closes marker corner to avoid erroneous displacements to marker corners
vector<Size> subPixWinSizes = getMaximumSubPixWindowSizes(markerCorners, markerIds, allChessboardImgPoints);
// filter corners outside the image and subpixel-refine charuco corners
selectAndRefineChessboardCorners(allChessboardImgPoints, image, charucoCorners, charucoIds, subPixWinSizes);
}
/** Remove charuco corners if any of their minMarkers closest markers has not been detected */
int filterCornersWithoutMinMarkers(InputArray _allCharucoCorners, InputArray allCharucoIds, InputArray allArucoIds,
OutputArray _filteredCharucoCorners, OutputArray _filteredCharucoIds) {
CV_Assert(charucoParameters.minMarkers >= 0 && charucoParameters.minMarkers <= 2);
vector<Point2f> filteredCharucoCorners;
vector<int> filteredCharucoIds;
// for each charuco corner
for(unsigned int i = 0; i < allCharucoIds.getMat().total(); i++) {
int currentCharucoId = allCharucoIds.getMat().at<int>(i);
int totalMarkers = 0; // nomber of closest marker detected
// look for closest markers
for(unsigned int m = 0; m < board.getNearestMarkerIdx()[currentCharucoId].size(); m++) {
int markerId = board.getIds()[board.getNearestMarkerIdx()[currentCharucoId][m]];
bool found = false;
for(unsigned int k = 0; k < allArucoIds.getMat().total(); k++) {
if(allArucoIds.getMat().at<int>(k) == markerId) {
found = true;
break;
}
}
if(found) totalMarkers++;
}
// if enough markers detected, add the charuco corner to the final list
if(totalMarkers >= charucoParameters.minMarkers) {
filteredCharucoIds.push_back(currentCharucoId);
filteredCharucoCorners.push_back(_allCharucoCorners.getMat().at<Point2f>(i));
}
}
// parse output
Mat(filteredCharucoCorners).copyTo(_filteredCharucoCorners);
Mat(filteredCharucoIds).copyTo(_filteredCharucoIds);
return (int)_filteredCharucoIds.total();
}
void detectBoard(InputArray image, OutputArray charucoCorners, OutputArray charucoIds,
InputOutputArrayOfArrays markerCorners, InputOutputArray markerIds) {
CV_Assert((markerCorners.empty() && markerIds.empty() && !image.empty()) || (markerCorners.total() == markerIds.total()));
vector<vector<Point2f>> tmpMarkerCorners;
vector<int> tmpMarkerIds;
InputOutputArrayOfArrays _markerCorners = markerCorners.needed() ? markerCorners : tmpMarkerCorners;
InputOutputArray _markerIds = markerIds.needed() ? markerIds : tmpMarkerIds;
if (markerCorners.empty() && markerIds.empty()) {
vector<vector<Point2f> > rejectedMarkers;
arucoDetector.detectMarkers(image, _markerCorners, _markerIds, rejectedMarkers);
if (charucoParameters.tryRefineMarkers)
arucoDetector.refineDetectedMarkers(image, board, _markerCorners, _markerIds, rejectedMarkers);
}
// if camera parameters are avaible, use approximated calibration
if(!charucoParameters.cameraMatrix.empty())
interpolateCornersCharucoApproxCalib(_markerCorners, _markerIds, image, charucoCorners, charucoIds);
// else use local homography
else
interpolateCornersCharucoLocalHom(_markerCorners, _markerIds, image, charucoCorners, charucoIds);
// to return a charuco corner, its closest aruco markers should have been detected
filterCornersWithoutMinMarkers(charucoCorners, charucoIds, _markerIds, charucoCorners, charucoIds);
}
2022-12-28 22:28:59 +08:00
};
CharucoDetector::CharucoDetector(const CharucoBoard &board, const CharucoParameters &charucoParams,
const DetectorParameters &detectorParams, const RefineParameters& refineParams) {
this->charucoDetectorImpl = makePtr<CharucoDetectorImpl>(board, charucoParams, ArucoDetector(board.getDictionary(), detectorParams, refineParams));
}
const CharucoBoard& CharucoDetector::getBoard() const {
return charucoDetectorImpl->board;
}
void CharucoDetector::setBoard(const CharucoBoard& board) {
this->charucoDetectorImpl->board = board;
charucoDetectorImpl->arucoDetector.setDictionary(board.getDictionary());
}
const CharucoParameters &CharucoDetector::getCharucoParameters() const {
return charucoDetectorImpl->charucoParameters;
}
void CharucoDetector::setCharucoParameters(CharucoParameters &charucoParameters) {
charucoDetectorImpl->charucoParameters = charucoParameters;
}
const DetectorParameters& CharucoDetector::getDetectorParameters() const {
return charucoDetectorImpl->arucoDetector.getDetectorParameters();
}
void CharucoDetector::setDetectorParameters(const DetectorParameters& detectorParameters) {
charucoDetectorImpl->arucoDetector.setDetectorParameters(detectorParameters);
}
const RefineParameters& CharucoDetector::getRefineParameters() const {
return charucoDetectorImpl->arucoDetector.getRefineParameters();
}
void CharucoDetector::setRefineParameters(const RefineParameters& refineParameters) {
charucoDetectorImpl->arucoDetector.setRefineParameters(refineParameters);
}
void CharucoDetector::detectBoard(InputArray image, OutputArray charucoCorners, OutputArray charucoIds,
InputOutputArrayOfArrays markerCorners, InputOutputArray markerIds) const {
charucoDetectorImpl->detectBoard(image, charucoCorners, charucoIds, markerCorners, markerIds);
if (charucoDetectorImpl->checkBoard(markerCorners, markerIds, charucoCorners, charucoIds) == false) {
2023-09-20 17:27:07 +08:00
CV_LOG_DEBUG(NULL, "ChArUco board is built incorrectly");
charucoCorners.release();
charucoIds.release();
2022-12-28 22:28:59 +08:00
}
}
void CharucoDetector::detectDiamonds(InputArray image, OutputArrayOfArrays _diamondCorners, OutputArray _diamondIds,
InputOutputArrayOfArrays inMarkerCorners, InputOutputArray inMarkerIds) const {
2022-12-28 22:28:59 +08:00
CV_Assert(getBoard().getChessboardSize() == Size(3, 3));
2023-04-21 05:43:03 +08:00
CV_Assert((inMarkerCorners.empty() && inMarkerIds.empty() && !image.empty()) || (inMarkerCorners.total() == inMarkerIds.total()));
2022-12-28 22:28:59 +08:00
vector<vector<Point2f>> tmpMarkerCorners;
vector<int> tmpMarkerIds;
InputOutputArrayOfArrays _markerCorners = inMarkerCorners.needed() ? inMarkerCorners : tmpMarkerCorners;
InputOutputArray _markerIds = inMarkerIds.needed() ? inMarkerIds : tmpMarkerIds;
if (_markerCorners.empty() && _markerIds.empty()) {
charucoDetectorImpl->arucoDetector.detectMarkers(image, _markerCorners, _markerIds);
}
const float minRepDistanceRate = 1.302455f;
vector<vector<Point2f>> diamondCorners;
vector<Vec4i> diamondIds;
// stores if the detected markers have been assigned or not to a diamond
vector<bool> assigned(_markerIds.total(), false);
if(_markerIds.total() < 4ull) return; // a diamond need at least 4 markers
// convert input image to grey
Mat grey;
if(image.type() == CV_8UC3)
cvtColor(image, grey, COLOR_BGR2GRAY);
else
grey = image.getMat();
auto board = getBoard();
// for each of the detected markers, try to find a diamond
for(unsigned int i = 0; i < (unsigned int)_markerIds.total(); i++) {
if(assigned[i]) continue;
// calculate marker perimeter
float perimeterSq = 0;
Mat corners = _markerCorners.getMat(i);
for(int c = 0; c < 4; c++) {
Point2f edge = corners.at<Point2f>(c) - corners.at<Point2f>((c + 1) % 4);
perimeterSq += edge.x*edge.x + edge.y*edge.y;
}
// maximum reprojection error relative to perimeter
float minRepDistance = sqrt(perimeterSq) * minRepDistanceRate;
int currentId = _markerIds.getMat().at<int>(i);
// prepare data to call refineDetectedMarkers()
// detected markers (only the current one)
vector<Mat> currentMarker;
vector<int> currentMarkerId;
currentMarker.push_back(_markerCorners.getMat(i));
currentMarkerId.push_back(currentId);
// marker candidates (the rest of markers if they have not been assigned)
vector<Mat> candidates;
vector<int> candidatesIdxs;
for(unsigned int k = 0; k < assigned.size(); k++) {
if(k == i) continue;
if(!assigned[k]) {
candidates.push_back(_markerCorners.getMat(k));
candidatesIdxs.push_back(k);
}
}
if(candidates.size() < 3ull) break; // we need at least 3 free markers
// modify charuco layout id to make sure all the ids are different than current id
vector<int> tmpIds(4ull);
for(int k = 1; k < 4; k++)
tmpIds[k] = currentId + 1 + k;
// current id is assigned to [0], so it is the marker on the top
tmpIds[0] = currentId;
// create Charuco board layout for diamond (3x3 layout)
charucoDetectorImpl->board = CharucoBoard(Size(3, 3), board.getSquareLength(),
board.getMarkerLength(), board.getDictionary(), tmpIds);
// try to find the rest of markers in the diamond
vector<int> acceptedIdxs;
if (currentMarker.size() != 4ull)
{
RefineParameters refineParameters(minRepDistance, -1.f, false);
RefineParameters tmp = charucoDetectorImpl->arucoDetector.getRefineParameters();
charucoDetectorImpl->arucoDetector.setRefineParameters(refineParameters);
charucoDetectorImpl->arucoDetector.refineDetectedMarkers(grey, getBoard(), currentMarker, currentMarkerId,
candidates,
noArray(), noArray(), acceptedIdxs);
charucoDetectorImpl->arucoDetector.setRefineParameters(tmp);
}
// if found, we have a diamond
if(currentMarker.size() == 4ull) {
assigned[i] = true;
// calculate diamond id, acceptedIdxs array indicates the markers taken from candidates array
Vec4i markerId;
markerId[0] = currentId;
for(int k = 1; k < 4; k++) {
int currentMarkerIdx = candidatesIdxs[acceptedIdxs[k - 1]];
markerId[k] = _markerIds.getMat().at<int>(currentMarkerIdx);
assigned[currentMarkerIdx] = true;
}
// interpolate the charuco corners of the diamond
vector<Point2f> currentMarkerCorners;
Mat aux;
charucoDetectorImpl->detectBoard(grey, currentMarkerCorners, aux, currentMarker, currentMarkerId);
2022-12-28 22:28:59 +08:00
// if everything is ok, save the diamond
if(currentMarkerCorners.size() > 0ull) {
// reorder corners
vector<Point2f> currentMarkerCornersReorder;
currentMarkerCornersReorder.resize(4);
currentMarkerCornersReorder[0] = currentMarkerCorners[0];
currentMarkerCornersReorder[1] = currentMarkerCorners[1];
currentMarkerCornersReorder[2] = currentMarkerCorners[3];
currentMarkerCornersReorder[3] = currentMarkerCorners[2];
diamondCorners.push_back(currentMarkerCornersReorder);
diamondIds.push_back(markerId);
}
}
}
charucoDetectorImpl->board = board;
if(diamondIds.size() > 0ull) {
// parse output
Mat(diamondIds).copyTo(_diamondIds);
_diamondCorners.create((int)diamondCorners.size(), 1, CV_32FC2);
for(unsigned int i = 0; i < diamondCorners.size(); i++) {
_diamondCorners.create(4, 1, CV_32FC2, i, true);
for(int j = 0; j < 4; j++) {
_diamondCorners.getMat(i).at<Point2f>(j) = diamondCorners[i][j];
}
}
}
}
void drawDetectedCornersCharuco(InputOutputArray _image, InputArray _charucoCorners,
InputArray _charucoIds, Scalar cornerColor) {
CV_Assert(!_image.getMat().empty() &&
(_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
CV_Assert((_charucoCorners.total() == _charucoIds.total()) ||
_charucoIds.total() == 0);
CV_Assert(_charucoCorners.channels() == 2);
Mat charucoCorners = _charucoCorners.getMat();
if (charucoCorners.type() != CV_32SC2)
charucoCorners.convertTo(charucoCorners, CV_32SC2);
Mat charucoIds;
if (!_charucoIds.empty())
charucoIds = _charucoIds.getMat();
size_t nCorners = charucoCorners.total();
2022-12-28 22:28:59 +08:00
for(size_t i = 0; i < nCorners; i++) {
Point corner = charucoCorners.at<Point>((int)i);
2022-12-28 22:28:59 +08:00
// draw first corner mark
rectangle(_image, corner - Point(3, 3), corner + Point(3, 3), cornerColor, 1, LINE_AA);
2022-12-28 22:28:59 +08:00
// draw ID
if(!_charucoIds.empty()) {
int id = charucoIds.at<int>((int)i);
2022-12-28 22:28:59 +08:00
stringstream s;
s << "id=" << id;
putText(_image, s.str(), corner + Point(5, -5), FONT_HERSHEY_SIMPLEX, 0.5,
2022-12-28 22:28:59 +08:00
cornerColor, 2);
}
}
}
void drawDetectedDiamonds(InputOutputArray _image, InputArrayOfArrays _corners, InputArray _ids, Scalar borderColor) {
CV_Assert(_image.getMat().total() != 0 &&
(_image.getMat().channels() == 1 || _image.getMat().channels() == 3));
CV_Assert((_corners.total() == _ids.total()) || _ids.total() == 0);
// calculate colors
Scalar textColor, cornerColor;
textColor = cornerColor = borderColor;
swap(textColor.val[0], textColor.val[1]); // text color just sawp G and R
swap(cornerColor.val[1], cornerColor.val[2]); // corner color just sawp G and B
int nMarkers = (int)_corners.total();
for(int i = 0; i < nMarkers; i++) {
Mat currentMarker = _corners.getMat(i);
CV_Assert(currentMarker.total() == 4 && currentMarker.channels() == 2);
if (currentMarker.type() != CV_32SC2)
currentMarker.convertTo(currentMarker, CV_32SC2);
2022-12-28 22:28:59 +08:00
// draw marker sides
for(int j = 0; j < 4; j++) {
Point p0, p1;
p0 = currentMarker.at<Point>(j);
p1 = currentMarker.at<Point>((j + 1) % 4);
2022-12-28 22:28:59 +08:00
line(_image, p0, p1, borderColor, 1);
}
// draw first corner mark
rectangle(_image, currentMarker.at<Point>(0) - Point(3, 3),
currentMarker.at<Point>(0) + Point(3, 3), cornerColor, 1, LINE_AA);
2022-12-28 22:28:59 +08:00
// draw id composed by four numbers
if(_ids.total() != 0) {
Point cent(0, 0);
2022-12-28 22:28:59 +08:00
for(int p = 0; p < 4; p++)
cent += currentMarker.at<Point>(p);
2022-12-28 22:28:59 +08:00
cent = cent / 4.;
stringstream s;
s << "id=" << _ids.getMat().at< Vec4i >(i);
putText(_image, s.str(), cent, FONT_HERSHEY_SIMPLEX, 0.5, textColor, 2);
}
}
}
}
}