opencv/modules/gpu/src/cuda/element_operations.cu

761 lines
32 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
2011-08-03 20:10:36 +08:00
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
2011-01-24 18:11:02 +08:00
#include "opencv2/gpu/device/transform.hpp"
2011-08-03 20:10:36 +08:00
#include "opencv2/gpu/device/limits.hpp"
2011-01-24 18:11:02 +08:00
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "internal_shared.hpp"
namespace cv { namespace gpu { namespace device
{
//////////////////////////////////////////////////////////////////////////////////////
// Compare
template <typename T> struct NotEqual : binary_function<T, T, uchar>
{
__device__ __forceinline__ uchar operator()(T src1, T src2) const
{
return static_cast<uchar>(static_cast<int>(src1 != src2) * 255);
}
};
template <typename T>
inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream)
{
NotEqual<T> op;
transform(static_cast< DevMem2D_<T> >(src1), static_cast< DevMem2D_<T> >(src2), dst, op, stream);
}
void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream)
{
compare_ne<uint>(src1, src2, dst, stream);
}
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream)
{
compare_ne<float>(src1, src2, dst, stream);
}
//////////////////////////////////////////////////////////////////////////
// Unary bitwise logical matrix operations
enum { UN_OP_NOT };
template <typename T, int opid>
struct UnOp;
template <typename T>
struct UnOp<T, UN_OP_NOT>
{
static __device__ __forceinline__ T call(T v) { return ~v; }
};
template <int opid>
__global__ void bitwiseUnOpKernel(int rows, int width, const PtrStep src, PtrStep dst)
{
const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (y < rows)
{
uchar* dst_ptr = dst.ptr(y) + x;
const uchar* src_ptr = src.ptr(y) + x;
if (x + sizeof(uint) - 1 < width)
{
*(uint*)dst_ptr = UnOp<uint, opid>::call(*(uint*)src_ptr);
}
else
{
const uchar* src_end = src.ptr(y) + width;
while (src_ptr < src_end)
{
*dst_ptr++ = UnOp<uchar, opid>::call(*src_ptr++);
}
}
}
}
template <int opid>
void bitwiseUnOp(int rows, int width, const PtrStep src, PtrStep dst,
cudaStream_t stream)
{
dim3 threads(16, 16);
dim3 grid(divUp(width, threads.x * sizeof(uint)),
divUp(rows, threads.y));
bitwiseUnOpKernel<opid><<<grid, threads>>>(rows, width, src, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T, int opid>
__global__ void bitwiseUnOpKernel(int rows, int cols, int cn, const PtrStep src,
const PtrStep mask, PtrStep dst)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < cols && y < rows && mask.ptr(y)[x / cn])
{
T* dst_row = (T*)dst.ptr(y);
const T* src_row = (const T*)src.ptr(y);
dst_row[x] = UnOp<T, opid>::call(src_row[x]);
}
}
template <typename T, int opid>
void bitwiseUnOp(int rows, int cols, int cn, const PtrStep src,
const PtrStep mask, PtrStep dst, cudaStream_t stream)
{
dim3 threads(16, 16);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
bitwiseUnOpKernel<T, opid><<<grid, threads>>>(rows, cols, cn, src, mask, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
2011-08-08 19:28:14 +08:00
void bitwiseNotCaller(int rows, int cols, size_t elem_size1, int cn,
const PtrStep src, PtrStep dst, cudaStream_t stream)
{
2011-08-08 19:28:14 +08:00
bitwiseUnOp<UN_OP_NOT>(rows, static_cast<int>(cols * elem_size1 * cn), src, dst, stream);
}
template <typename T>
void bitwiseMaskNotCaller(int rows, int cols, int cn, const PtrStep src,
const PtrStep mask, PtrStep dst, cudaStream_t stream)
{
bitwiseUnOp<T, UN_OP_NOT>(rows, cols * cn, cn, src, mask, dst, stream);
}
template void bitwiseMaskNotCaller<uchar>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskNotCaller<ushort>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskNotCaller<uint>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
//////////////////////////////////////////////////////////////////////////
// Binary bitwise logical matrix operations
enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR };
template <typename T, int opid>
struct BinOp;
template <typename T>
struct BinOp<T, BIN_OP_OR>
{
static __device__ __forceinline__ T call(T a, T b) { return a | b; }
};
template <typename T>
struct BinOp<T, BIN_OP_AND>
{
static __device__ __forceinline__ T call(T a, T b) { return a & b; }
};
template <typename T>
struct BinOp<T, BIN_OP_XOR>
{
static __device__ __forceinline__ T call(T a, T b) { return a ^ b; }
};
template <int opid>
__global__ void bitwiseBinOpKernel(int rows, int width, const PtrStep src1,
const PtrStep src2, PtrStep dst)
{
const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (y < rows)
{
uchar* dst_ptr = dst.ptr(y) + x;
const uchar* src1_ptr = src1.ptr(y) + x;
const uchar* src2_ptr = src2.ptr(y) + x;
if (x + sizeof(uint) - 1 < width)
{
*(uint*)dst_ptr = BinOp<uint, opid>::call(*(uint*)src1_ptr, *(uint*)src2_ptr);
}
else
{
const uchar* src1_end = src1.ptr(y) + width;
while (src1_ptr < src1_end)
{
*dst_ptr++ = BinOp<uchar, opid>::call(*src1_ptr++, *src2_ptr++);
}
}
}
}
template <int opid>
void bitwiseBinOp(int rows, int width, const PtrStep src1, const PtrStep src2,
PtrStep dst, cudaStream_t stream)
{
dim3 threads(16, 16);
dim3 grid(divUp(width, threads.x * sizeof(uint)), divUp(rows, threads.y));
bitwiseBinOpKernel<opid><<<grid, threads>>>(rows, width, src1, src2, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T, int opid>
__global__ void bitwiseBinOpKernel(
int rows, int cols, int cn, const PtrStep src1, const PtrStep src2,
const PtrStep mask, PtrStep dst)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < cols && y < rows && mask.ptr(y)[x / cn])
{
T* dst_row = (T*)dst.ptr(y);
const T* src1_row = (const T*)src1.ptr(y);
const T* src2_row = (const T*)src2.ptr(y);
dst_row[x] = BinOp<T, opid>::call(src1_row[x], src2_row[x]);
}
}
template <typename T, int opid>
void bitwiseBinOp(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2,
const PtrStep mask, PtrStep dst, cudaStream_t stream)
{
dim3 threads(16, 16);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
bitwiseBinOpKernel<T, opid><<<grid, threads>>>(rows, cols, cn, src1, src2, mask, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
2011-08-08 19:28:14 +08:00
void bitwiseOrCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStep src1,
const PtrStep src2, PtrStep dst, cudaStream_t stream)
{
2011-08-08 19:28:14 +08:00
bitwiseBinOp<BIN_OP_OR>(rows, static_cast<int>(cols * elem_size1 * cn), src1, src2, dst, stream);
}
template <typename T>
void bitwiseMaskOrCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2,
const PtrStep mask, PtrStep dst, cudaStream_t stream)
{
bitwiseBinOp<T, BIN_OP_OR>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
}
template void bitwiseMaskOrCaller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskOrCaller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskOrCaller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
2011-08-08 19:28:14 +08:00
void bitwiseAndCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStep src1,
const PtrStep src2, PtrStep dst, cudaStream_t stream)
{
2011-08-08 19:28:14 +08:00
bitwiseBinOp<BIN_OP_AND>(rows, static_cast<int>(cols * elem_size1 * cn), src1, src2, dst, stream);
}
template <typename T>
void bitwiseMaskAndCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2,
const PtrStep mask, PtrStep dst, cudaStream_t stream)
{
bitwiseBinOp<T, BIN_OP_AND>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
}
template void bitwiseMaskAndCaller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskAndCaller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskAndCaller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
2011-08-08 19:28:14 +08:00
void bitwiseXorCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStep src1,
const PtrStep src2, PtrStep dst, cudaStream_t stream)
{
2011-08-08 19:28:14 +08:00
bitwiseBinOp<BIN_OP_XOR>(rows, static_cast<int>(cols * elem_size1 * cn), src1, src2, dst, stream);
}
template <typename T>
void bitwiseMaskXorCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2,
const PtrStep mask, PtrStep dst, cudaStream_t stream)
{
bitwiseBinOp<T, BIN_OP_XOR>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
}
template void bitwiseMaskXorCaller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskXorCaller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
template void bitwiseMaskXorCaller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
//////////////////////////////////////////////////////////////////////////
// min/max
namespace detail
{
template <size_t size, typename F> struct MinMaxTraits : DefaultTransformFunctorTraits<F>
{
};
template <typename F> struct MinMaxTraits<2, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_shift = 4 };
};
template <typename F> struct MinMaxTraits<4, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_block_dim_y = 4 };
enum { smart_shift = 4 };
};
}
template <typename T> struct TransformFunctorTraits< minimum<T> > : detail::MinMaxTraits< sizeof(T), minimum<T> >
{
};
template <typename T> struct TransformFunctorTraits< maximum<T> > : detail::MinMaxTraits< sizeof(T), maximum<T> >
{
};
template <typename T> struct TransformFunctorTraits< binder2nd< minimum<T> > > : detail::MinMaxTraits< sizeof(T), binder2nd< minimum<T> > >
{
};
template <typename T> struct TransformFunctorTraits< binder2nd< maximum<T> > > : detail::MinMaxTraits< sizeof(T), binder2nd< maximum<T> > >
{
};
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
2011-08-03 20:10:36 +08:00
transform(src1, src2, dst, minimum<T>(), stream);
}
template void min_gpu<uchar >(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream);
template void min_gpu<schar >(const DevMem2D_<schar>& src1, const DevMem2D_<schar>& src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void min_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void min_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void min_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void min_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
2011-08-03 20:10:36 +08:00
transform(src1, src2, dst, maximum<T>(), stream);
}
template void max_gpu<uchar >(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream);
template void max_gpu<schar >(const DevMem2D_<schar>& src1, const DevMem2D_<schar>& src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void max_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void max_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
2011-08-03 20:10:36 +08:00
transform(src1, dst, device::bind2nd(minimum<T>(), src2), stream);
}
template void min_gpu<uchar >(const DevMem2D& src1, uchar src2, const DevMem2D& dst, cudaStream_t stream);
template void min_gpu<schar >(const DevMem2D_<schar>& src1, schar src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, ushort src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void min_gpu<short >(const DevMem2D_<short>& src1, short src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void min_gpu<int >(const DevMem2D_<int>& src1, int src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void min_gpu<float >(const DevMem2D_<float>& src1, float src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void min_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
2011-08-03 20:10:36 +08:00
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
2011-08-03 20:10:36 +08:00
transform(src1, dst, device::bind2nd(maximum<T>(), src2), stream);
}
template void max_gpu<uchar >(const DevMem2D& src1, uchar src2, const DevMem2D& dst, cudaStream_t stream);
template void max_gpu<schar >(const DevMem2D_<schar>& src1, schar src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, ushort src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void max_gpu<short >(const DevMem2D_<short>& src1, short src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void max_gpu<int >(const DevMem2D_<int>& src1, int src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, float src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
2011-01-24 18:11:02 +08:00
//////////////////////////////////////////////////////////////////////////
// threshold
namespace detail
{
template <size_t size, typename F> struct ThresholdTraits : DefaultTransformFunctorTraits<F>
{
};
template <typename F> struct ThresholdTraits<2, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_shift = 4 };
};
template <typename F> struct ThresholdTraits<4, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_block_dim_y = 4 };
enum { smart_shift = 4 };
};
}
template <typename T> struct TransformFunctorTraits< thresh_binary_func<T> > : detail::ThresholdTraits< sizeof(T), thresh_binary_func<T> >
{
};
template <typename T> struct TransformFunctorTraits< thresh_binary_inv_func<T> > : detail::ThresholdTraits< sizeof(T), thresh_binary_inv_func<T> >
{
};
template <typename T> struct TransformFunctorTraits< thresh_trunc_func<T> > : detail::ThresholdTraits< sizeof(T), thresh_trunc_func<T> >
{
};
template <typename T> struct TransformFunctorTraits< thresh_to_zero_func<T> > : detail::ThresholdTraits< sizeof(T), thresh_to_zero_func<T> >
{
};
template <typename T> struct TransformFunctorTraits< thresh_to_zero_inv_func<T> > : detail::ThresholdTraits< sizeof(T), thresh_to_zero_inv_func<T> >
{
};
2011-01-24 18:11:02 +08:00
template <template <typename> class Op, typename T>
void threshold_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, T thresh, T maxVal,
2011-01-24 18:11:02 +08:00
cudaStream_t stream)
{
Op<T> op(thresh, maxVal);
2011-01-24 18:11:02 +08:00
transform(src, dst, op, stream);
}
template <typename T>
void threshold_gpu(const DevMem2D& src, const DevMem2D& dst, T thresh, T maxVal, int type,
2011-01-24 18:11:02 +08:00
cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, T thresh, T maxVal,
2011-01-24 18:11:02 +08:00
cudaStream_t stream);
static const caller_t callers[] =
{
2011-08-03 20:10:36 +08:00
threshold_caller<thresh_binary_func, T>,
threshold_caller<thresh_binary_inv_func, T>,
threshold_caller<thresh_trunc_func, T>,
threshold_caller<thresh_to_zero_func, T>,
threshold_caller<thresh_to_zero_inv_func, T>
2011-01-24 18:11:02 +08:00
};
callers[type]((DevMem2D_<T>)src, (DevMem2D_<T>)dst, thresh, maxVal, stream);
}
template void threshold_gpu<uchar>(const DevMem2D& src, const DevMem2D& dst, uchar thresh, uchar maxVal, int type, cudaStream_t stream);
template void threshold_gpu<schar>(const DevMem2D& src, const DevMem2D& dst, schar thresh, schar maxVal, int type, cudaStream_t stream);
template void threshold_gpu<ushort>(const DevMem2D& src, const DevMem2D& dst, ushort thresh, ushort maxVal, int type, cudaStream_t stream);
template void threshold_gpu<short>(const DevMem2D& src, const DevMem2D& dst, short thresh, short maxVal, int type, cudaStream_t stream);
template void threshold_gpu<int>(const DevMem2D& src, const DevMem2D& dst, int thresh, int maxVal, int type, cudaStream_t stream);
2011-01-24 18:11:02 +08:00
template void threshold_gpu<float>(const DevMem2D& src, const DevMem2D& dst, float thresh, float maxVal, int type, cudaStream_t stream);
template void threshold_gpu<double>(const DevMem2D& src, const DevMem2D& dst, double thresh, double maxVal, int type, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////
// subtract
template <> struct TransformFunctorTraits< minus<short> > : DefaultTransformFunctorTraits< minus<short> >
{
enum { smart_block_dim_y = 8 };
enum { smart_shift = 4 };
};
template <typename T> void subtractCaller(const DevMem2D src1, const DevMem2D src2, DevMem2D dst, cudaStream_t stream)
{
2011-08-03 20:10:36 +08:00
transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, minus<T>(), stream);
}
template void subtractCaller<short>(const DevMem2D src1, const DevMem2D src2, DevMem2D dst, cudaStream_t stream);
2011-07-21 16:47:44 +08:00
//////////////////////////////////////////////////////////////////////////
// pow
template<typename T, bool Signed = device::numeric_limits<T>::is_signed> struct PowOp : unary_function<T, T>
2011-07-21 16:47:44 +08:00
{
float power;
PowOp(float power_) : power(power_) {}
2011-07-22 21:24:27 +08:00
2011-07-21 16:47:44 +08:00
__device__ __forceinline__ T operator()(const T& e) const
{
2011-07-22 21:26:31 +08:00
return saturate_cast<T>(__powf((float)e, power));
2011-07-21 16:47:44 +08:00
}
};
template<typename T> struct PowOp<T, true> : unary_function<T, T>
2011-07-21 16:47:44 +08:00
{
float power;
PowOp(float power_) : power(power_) {}
__device__ __forceinline__ float operator()(const T& e) const
2011-07-21 16:47:44 +08:00
{
2011-08-03 20:10:36 +08:00
T res = saturate_cast<T>(__powf((float)e, power));
2011-07-21 16:47:44 +08:00
if ( (e < 0) && (1 & (int)power) )
res *= -1;
return res;
}
};
template<> struct PowOp<float> : unary_function<float, float>
2011-07-21 16:47:44 +08:00
{
float power;
PowOp(float power_) : power(power_) {}
__device__ __forceinline__ float operator()(const float& e) const
2011-07-21 16:47:44 +08:00
{
return __powf(::fabs(e), power);
2011-07-21 16:47:44 +08:00
}
};
namespace detail
{
template <size_t size, typename T> struct PowOpTraits : DefaultTransformFunctorTraits< PowOp<T> >
{
};
template <typename T> struct PowOpTraits<1, T> : DefaultTransformFunctorTraits< PowOp<T> >
{
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
template <typename T> struct PowOpTraits<2, T> : DefaultTransformFunctorTraits< PowOp<T> >
{
enum { smart_shift = 4 };
};
template <typename T> struct PowOpTraits<4, T> : DefaultTransformFunctorTraits< PowOp<T> >
{
enum { smart_block_dim_y = 4 };
enum { smart_shift = 4 };
};
}
template <typename T> struct TransformFunctorTraits< PowOp<T> > : detail::PowOpTraits<sizeof(T), T>
{
};
2011-07-21 16:47:44 +08:00
template<typename T>
void pow_caller(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream)
{
transform((DevMem2D_<T>)src, (DevMem2D_<T>)dst, PowOp<T>(power), stream);
}
template void pow_caller<uchar>(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream);
template void pow_caller<schar>(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream);
template void pow_caller<short>(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream);
template void pow_caller<ushort>(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream);
template void pow_caller<int>(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream);
template void pow_caller<float>(const DevMem2D& src, float power, DevMem2D dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////
// divide
struct divide_8uc4_32f : binary_function<uchar4, float, uchar4>
{
__device__ __forceinline__ uchar4 operator ()(uchar4 a, float b) const
{
return make_uchar4(saturate_cast<uchar>(a.x / b), saturate_cast<uchar>(a.y / b),
saturate_cast<uchar>(a.z / b), saturate_cast<uchar>(a.w / b));
}
};
template <> struct TransformFunctorTraits<divide_8uc4_32f> : DefaultTransformFunctorTraits<divide_8uc4_32f>
{
enum { smart_block_dim_x = 8 };
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
void divide_gpu(const DevMem2D_<uchar4>& src1, const DevMem2Df& src2, const DevMem2D_<uchar4>& dst, cudaStream_t stream)
{
transform(static_cast< DevMem2D_<uchar4> >(src1), src2, static_cast< DevMem2D_<uchar4> >(dst), divide_8uc4_32f(), stream);
}
struct divide_16sc4_32f : binary_function<short4, float, short4>
{
__device__ __forceinline__ short4 operator ()(short4 a, float b) const
{
return make_short4(saturate_cast<short>(a.x / b), saturate_cast<uchar>(a.y / b),
saturate_cast<short>(a.z / b), saturate_cast<uchar>(a.w / b));
}
};
template <> struct TransformFunctorTraits<divide_16sc4_32f> : DefaultTransformFunctorTraits<divide_16sc4_32f>
{
enum { smart_block_dim_x = 8 };
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
void divide_gpu(const DevMem2D_<short4>& src1, const DevMem2Df& src2, const DevMem2D_<short4>& dst, cudaStream_t stream)
{
transform(static_cast< DevMem2D_<short4> >(src1), src2, static_cast< DevMem2D_<short4> >(dst), divide_16sc4_32f(), stream);
}
//////////////////////////////////////////////////////////////////////////
// multiply
struct add_16sc4 : binary_function<short4, short4, short4>
{
__device__ __forceinline__ short4 operator ()(short4 a, short4 b) const
{
return make_short4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
};
template <> struct TransformFunctorTraits<add_16sc4> : DefaultTransformFunctorTraits<add_16sc4>
{
enum { smart_block_dim_x = 8 };
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
void add_gpu(const DevMem2D_<short4>& src1, const DevMem2D_<short4>& src2, const DevMem2D_<short4>& dst, cudaStream_t stream)
{
transform(static_cast< DevMem2D_<short4> >(src1), static_cast< DevMem2D_<short4> >(src2),
static_cast< DevMem2D_<short4> >(dst), add_16sc4(), stream);
}
//////////////////////////////////////////////////////////////////////////
// multiply
2011-09-12 16:45:56 +08:00
struct multiply_8uc4_32f : binary_function<uint, float, uint>
{
2011-09-12 16:45:56 +08:00
__device__ __forceinline__ uint operator ()(uint a, float b) const
{
2011-09-12 16:45:56 +08:00
uint res = 0;
res |= (saturate_cast<uchar>((0xffu & (a )) * b) );
res |= (saturate_cast<uchar>((0xffu & (a >> 8)) * b) << 8);
res |= (saturate_cast<uchar>((0xffu & (a >> 16)) * b) << 16);
res |= (saturate_cast<uchar>((0xffu & (a >> 24)) * b) << 24);
2011-09-12 16:45:56 +08:00
return res;
}
};
2011-09-12 16:45:56 +08:00
template <> struct TransformFunctorTraits<multiply_8uc4_32f> : DefaultTransformFunctorTraits<multiply_8uc4_32f>
{
enum { smart_block_dim_x = 8 };
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
2011-09-12 16:45:56 +08:00
void multiply_gpu(const DevMem2D_<uchar4>& src1, const DevMem2Df& src2, const DevMem2D_<uchar4>& dst, cudaStream_t stream)
{
transform(static_cast< DevMem2D_<uint> >(src1), src2, static_cast< DevMem2D_<uint> >(dst), multiply_8uc4_32f(), stream);
}
struct multiply_16sc4_32f : binary_function<short4, float, short4>
{
__device__ __forceinline__ short4 operator ()(short4 a, float b) const
{
return make_short4(saturate_cast<short>(a.x * b), saturate_cast<short>(a.y * b),
saturate_cast<short>(a.z * b), saturate_cast<short>(a.w * b));
}
};
template <> struct TransformFunctorTraits<multiply_16sc4_32f> : DefaultTransformFunctorTraits<multiply_16sc4_32f>
{
enum { smart_block_dim_x = 8 };
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
void multiply_gpu(const DevMem2D_<short4>& src1, const DevMem2Df& src2, const DevMem2D_<short4>& dst, cudaStream_t stream)
{
transform(static_cast< DevMem2D_<short4> >(src1), src2,
static_cast< DevMem2D_<short4> >(dst), multiply_16sc4_32f(), stream);
}
//////////////////////////////////////////////////////////////////////////
// multiply (by scalar)
2011-09-12 16:45:56 +08:00
template <typename T, typename D, typename S> struct MultiplyScalar : unary_function<T, D>
{
2011-09-12 16:45:56 +08:00
__host__ __device__ __forceinline__ MultiplyScalar(typename TypeTraits<S>::ParameterType scale_) : scale(scale_) {}
2011-09-12 16:45:56 +08:00
__device__ __forceinline__ D operator ()(typename TypeTraits<T>::ParameterType a) const
{
2011-09-12 16:45:56 +08:00
return saturate_cast<D>(a * scale);
}
2011-09-12 16:45:56 +08:00
const S scale;
};
2011-09-12 16:45:56 +08:00
template <> struct TransformFunctorTraits< MultiplyScalar<uchar, uchar, float> > : DefaultTransformFunctorTraits< MultiplyScalar<uchar, uchar, float> >
{
2011-09-12 16:45:56 +08:00
enum { smart_block_dim_y = 8 };
enum { smart_shift = 8 };
};
2011-09-12 16:45:56 +08:00
template <typename T, typename D>
void multiplyScalar_gpu(const DevMem2D& src, float scale, const DevMem2D& dst, cudaStream_t stream)
{
transform(static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), MultiplyScalar<T, D, float>(scale), stream);
}
2011-09-12 16:45:56 +08:00
template void multiplyScalar_gpu<uchar, uchar>(const DevMem2D& src, float scale, const DevMem2D& dst, cudaStream_t stream);
}}}