opencv/modules/dnn/src/layers/permute_layer.cpp

322 lines
10 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <float.h>
#include <algorithm>
namespace cv
{
namespace dnn
{
class PermuteLayerImpl : public PermuteLayer
{
public:
void checkCurrentOrder(int currentOrder)
{
if(currentOrder < 0 || currentOrder > 3)
{
CV_Error(
Error::StsBadArg,
"Orders of dimensions in Permute layer parameter"
"must be in [0...3] interval");
}
if(std::find(_order.begin(), _order.end(), currentOrder) != _order.end())
{
CV_Error(Error::StsBadArg,
"Permute layer parameter contains duplicated orders.");
}
}
void checkNeedForPermutation()
{
_needsPermute = false;
for (size_t i = 0; i < _numAxes; ++i)
{
if (_order[i] != i)
{
_needsPermute = true;
break;
}
}
}
PermuteLayerImpl(const LayerParams &params)
: _count(0), _needsPermute(false), _numAxes(0)
{
if (!params.has("order"))
{
return;
}
DictValue paramOrder = params.get("order");
if(paramOrder.size() > 4)
{
CV_Error(
Error::StsBadArg,
"Too many (> 4) orders of dimensions in Permute layer");
}
_numAxes = paramOrder.size();
for (size_t i = 0; i < _numAxes; i++)
{
int currentOrder = paramOrder.get<int>(i);
checkCurrentOrder(currentOrder);
_order.push_back(currentOrder);
}
setParamsFrom(params);
checkNeedForPermutation();
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
if(!_needsPermute)
return true;
CV_Assert(inputs.size() > 0);
CV_Assert((int)_numAxes == inputs[0].size());
MatShape shapeBefore = inputs[0], shapeAfter;
for (size_t i = 0; i < _numAxes; i++)
{
shapeAfter.push_back(shapeBefore[_order[i]]);
}
outputs.clear();
for (size_t i = 0; i < inputs.size(); i++)
{
CV_Assert(inputs[i][2] == shapeBefore[2] && inputs[i][3] == shapeBefore[3]);
CV_Assert(total(inputs[i]) == total(shapeAfter));
outputs.push_back(shapeAfter);
}
return false;
}
void computeStrides(const MatShape &shapeBefore, const MatShape &shapeAfter)
{
_oldStride.resize(_numAxes);
_newStride.resize(_numAxes);
_oldStride[_numAxes - 1] = 1;
_newStride[_numAxes - 1] = 1;
for(int i = _numAxes - 2; i >= 0; i--)
{
_oldStride[i] = _oldStride[i + 1] * shapeBefore[i + 1];
_newStride[i] = _newStride[i + 1] * shapeAfter[i + 1];
}
_count = _oldStride[0] * shapeBefore[0];
}
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
if(!_needsPermute)
{
return;
}
CV_Assert(inputs.size() > 0);
const Mat& inp0 = *inputs[0];
CV_Assert((int)_numAxes == inp0.dims);
computeStrides(shape(*inputs[0]), shape(outputs[0]));
}
class PermuteInvoker : public ParallelLoopBody
{
public:
const Mat* inp;
Mat* out;
const std::vector<size_t>* order;
int nstripes;
static void run(const Mat& inp, Mat& out, const std::vector<size_t>& order, int nstripes)
{
PermuteInvoker p;
p.inp = &inp;
p.out = &out;
p.order = &order;
p.nstripes = nstripes;
CV_Assert( out.size[0] == inp.size[order[0]] &&
out.size[1] == inp.size[order[1]] &&
out.size[2] == inp.size[order[2]] &&
out.size[3] == inp.size[order[3]]);
parallel_for_(Range(0, nstripes), p, nstripes);
}
PermuteInvoker() {}
void operator()(const Range& r) const
{
int n0 = out->size[0], n1 = out->size[1], n2 = out->size[2], n3 = out->size[3];
size_t orows = (size_t)n0*n1*n2;
size_t stripeSize = (orows + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, orows);
const size_t esz = sizeof(float);
size_t ostep0 = out->step[0]/esz, ostep1 = out->step[1]/esz, ostep2 = out->step[2]/esz;
const size_t* ord = &order->at(0);
size_t istep0 = inp->step[ord[0]]/esz, istep1 = inp->step[ord[1]]/esz,
istep2 = inp->step[ord[2]]/esz, istep3 = inp->step[ord[3]]/esz;
size_t val = stripeStart;
int i2 = (int)(val % n2);
val /= n2;
int i1 = (int)(val % n1);
int i0 = (int)(val / n1);
const float* inptr_orig = inp->ptr<float>();
float* outptr_orig = out->ptr<float>();
for( size_t ofs = stripeStart; ofs < stripeEnd; ofs++ )
{
const float* inptr = inptr_orig + i0*istep0 + i1*istep1 + i2*istep2;
float* outptr = outptr_orig + i0*ostep0 + i1*ostep1 + i2*ostep2;
for( int i3 = 0; i3 < n3; i3++ )
outptr[i3] = inptr[i3*istep3];
if( ++i2 >= n2 )
{
i2 = 0;
if( ++i1 >= n1 )
{
i1 = 0;
if( ++i0 >= n0 )
break;
}
}
}
}
};
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
size_t k, ninputs = inputs.size();
if(!_needsPermute)
{
for (k = 0; k < ninputs; k++)
outputs[k] = *inputs[k];
}
else
{
size_t i, j, count = _count, numAxes = _numAxes;
const size_t* newStride = &_newStride[0];
const size_t* oldStride = &_oldStride[0];
const size_t* order = &_order[0];
for (k = 0; k < ninputs; k++)
{
const Mat& inp = *inputs[k];
Mat& out = outputs[k];
CV_Assert(inp.dims == numAxes && inp.size == inputs[0]->size);
CV_Assert(out.dims == numAxes && out.size == outputs[0].size);
CV_Assert(inp.isContinuous() && out.isContinuous());
CV_Assert(inp.type() == CV_32F && out.type() == CV_32F);
if( numAxes == 4 )
{
int nstripes = getNumThreads();
PermuteInvoker::run(inp, out, _order, nstripes);
}
else
{
const float *srcData = inp.ptr<float>();
float *dstData = out.ptr<float>();
for (i = 0; i < count; ++i)
{
size_t oldPosition = 0;
size_t newPosition = i;
for (j = 0; j < numAxes; ++j)
{
oldPosition += (newPosition / newStride[j]) * oldStride[order[j]];
newPosition %= newStride[j];
}
dstData[i] = srcData[oldPosition];
}
}
}
}
}
size_t _count;
std::vector<size_t> _order;
std::vector<int> _oldDimensionSize;
std::vector<int> _newDimensionSize;
std::vector<size_t> _oldStride;
std::vector<size_t> _newStride;
bool _needsPermute;
size_t _numAxes;
};
Ptr<PermuteLayer> PermuteLayer::create(const LayerParams &params)
{
return Ptr<PermuteLayer>(new PermuteLayerImpl(params));
}
}
}