opencv/modules/dnn/src/cuda/vector_traits.hpp

110 lines
3.4 KiB
C++
Raw Normal View History

Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA_VECTOR_TRAITS_HPP
#define OPENCV_DNN_SRC_CUDA_VECTOR_TRAITS_HPP
#include <cuda_runtime.h>
#include "types.hpp"
#include "../cuda4dnn/csl/pointer.hpp"
#include <type_traits>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace device {
/** \file vector_traits.hpp
* \brief utility classes and functions for vectorized memory loads/stores
*
* Example:
* using vector_type = get_vector_type_t<float, 4>;
*
* auto input_vPtr = type::get_pointer(iptr); // iptr is of type DevicePtr<const float>
* auto output_vPtr = type::get_pointer(optr); // optr is of type DevicePtr<float>
*
* vector_type vec;
* v_load(vec, input_vPtr);
*
* for(int i = 0; i < vector_type::size(); i++)
* vec[i] = do_something(vec[i]);
*
* v_store(output_vPtr, vec);
*/
namespace detail {
template <size_type N> struct raw_type_ { };
template <> struct raw_type_<256> { typedef ulonglong4 type; };
template <> struct raw_type_<128> { typedef uint4 type; };
template <> struct raw_type_<64> { typedef uint2 type; };
template <> struct raw_type_<32> { typedef uint1 type; };
template <> struct raw_type_<16> { typedef uchar2 type; };
template <> struct raw_type_<8> { typedef uchar1 type; };
template <size_type N> struct raw_type {
using type = typename raw_type_<N>::type;
static_assert(sizeof(type) * 8 == N, "");
};
}
/* \tparam T type of element in the vector
* \tparam N "number of elements" of type T in the vector
*/
template <class T, size_type N>
union vector_type {
using value_type = T;
using raw_type = typename detail::raw_type<N * sizeof(T) * 8>::type;
__device__ vector_type() { }
__device__ static constexpr size_type size() { return N; }
raw_type raw;
T data[N];
template <class U> static __device__
typename std::enable_if<std::is_const<U>::value, const vector_type*>
::type get_pointer(csl::DevicePtr<U> ptr) {
return reinterpret_cast<const vector_type*>(ptr.get());
}
template <class U> static __device__
typename std::enable_if<!std::is_const<U>::value, vector_type*>
::type get_pointer(csl::DevicePtr<U> ptr) {
return reinterpret_cast<vector_type*>(ptr.get());
}
};
template <class V>
__device__ void v_load(V& dest, const V& src) {
dest.raw = src.raw;
}
template <class V>
__device__ void v_load(V& dest, const V* src) {
dest.raw = src->raw;
}
template <class V>
__device__ void v_store(V* dest, const V& src) {
dest->raw = src.raw;
}
template <class V>
__device__ void v_store(V& dest, const V& src) {
dest.raw = src.raw;
}
template <class T, size_type N>
struct get_vector_type {
typedef vector_type<T, N> type;
};
template <class T, size_type N>
using get_vector_type_t = typename get_vector_type<T, N>::type;
}}}}} /* namespace cv::dnn::cuda4dnn::csl::device */
#endif /* OPENCV_DNN_SRC_CUDA_VECTOR_TRAITS_HPP */