mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 00:39:13 +08:00
737 lines
28 KiB
Python
737 lines
28 KiB
Python
|
# This file is part of OpenCV project.
|
||
|
# It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
# of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
import argparse
|
||
|
import glob
|
||
|
import json
|
||
|
import multiprocessing
|
||
|
import os
|
||
|
import sys
|
||
|
import time
|
||
|
|
||
|
from datetime import datetime
|
||
|
|
||
|
import cv2 as cv
|
||
|
import joblib
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
import yaml
|
||
|
|
||
|
|
||
|
def getDimBox(pts):
|
||
|
return np.array([[pts[...,k].min(), pts[...,k].max()] for k in range(pts.shape[-1])])
|
||
|
|
||
|
|
||
|
def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids):
|
||
|
cam_box = np.array([
|
||
|
[ 1, 1, 3],
|
||
|
[ 1, -1, 3],
|
||
|
[-1, -1, 3],
|
||
|
[-1, 1, 3]
|
||
|
], dtype=np.float32)
|
||
|
dist_to_pattern = np.linalg.norm(pattern.mean(0))
|
||
|
cam_box *= 0.1 * dist_to_pattern
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111, projection='3d')
|
||
|
|
||
|
ax_lines = [None] * len(R)
|
||
|
ax.set_title(f'Cameras position and pattern of frame {frame_idx}',
|
||
|
loc='center', wrap=True, fontsize=20)
|
||
|
all_pts = [pattern]
|
||
|
colors = np.random.RandomState(0).rand(len(R), 3)
|
||
|
|
||
|
for i in range(len(R)):
|
||
|
cam_box_i = cam_box.copy()
|
||
|
cam_box_i[:,0] *= image_sizes[i][0] / max(image_sizes[i][1], image_sizes[i][0])
|
||
|
cam_box_i[:,1] *= image_sizes[i][1] / max(image_sizes[i][1], image_sizes[i][0])
|
||
|
cam_box_Rt = (R[i] @ cam_box_i.T + t[i]).T
|
||
|
all_pts.append(np.concatenate((cam_box_Rt, t[i].T)))
|
||
|
|
||
|
ax_lines[i] = ax.plot([t[i][0,0], cam_box_Rt[0,0]],
|
||
|
[t[i][1,0], cam_box_Rt[0,1]],
|
||
|
[t[i][2,0], cam_box_Rt[0,2]],
|
||
|
'-', color=colors[i])[0]
|
||
|
|
||
|
ax.plot([t[i][0,0], cam_box_Rt[1,0]],
|
||
|
[t[i][1,0], cam_box_Rt[1,1]],
|
||
|
[t[i][2,0], cam_box_Rt[1,2]],
|
||
|
'-', color=colors[i])
|
||
|
ax.plot([t[i][0,0], cam_box_Rt[2,0]],
|
||
|
[t[i][1,0], cam_box_Rt[2,1]],
|
||
|
[t[i][2,0], cam_box_Rt[2,2]],
|
||
|
'-', color=colors[i])
|
||
|
ax.plot([t[i][0,0], cam_box_Rt[3,0]],
|
||
|
[t[i][1,0], cam_box_Rt[3,1]],
|
||
|
[t[i][2,0], cam_box_Rt[3,2]],
|
||
|
'-', color=colors[i])
|
||
|
|
||
|
ax.plot([cam_box_Rt[0,0], cam_box_Rt[1,0]],
|
||
|
[cam_box_Rt[0,1], cam_box_Rt[1,1]],
|
||
|
[cam_box_Rt[0,2], cam_box_Rt[1,2]],
|
||
|
'-', color=colors[i])
|
||
|
ax.plot([cam_box_Rt[1,0], cam_box_Rt[2,0]],
|
||
|
[cam_box_Rt[1,1], cam_box_Rt[2,1]],
|
||
|
[cam_box_Rt[1,2], cam_box_Rt[2,2]],
|
||
|
'-', color=colors[i])
|
||
|
ax.plot([cam_box_Rt[2,0], cam_box_Rt[3,0]],
|
||
|
[cam_box_Rt[2,1], cam_box_Rt[3,1]],
|
||
|
[cam_box_Rt[2,2], cam_box_Rt[3,2]],
|
||
|
'-', color=colors[i])
|
||
|
ax.plot([cam_box_Rt[3,0], cam_box_Rt[0,0]],
|
||
|
[cam_box_Rt[3,1], cam_box_Rt[0,1]],
|
||
|
[cam_box_Rt[3,2], cam_box_Rt[0,2]],
|
||
|
'-', color=colors[i])
|
||
|
|
||
|
# Plot lines between cameras
|
||
|
for (i, j) in pairs:
|
||
|
xs = [t[i][0,0], t[j][0,0]]
|
||
|
ys = [t[i][1,0], t[j][1,0]]
|
||
|
zs = [t[i][2,0], t[j][2,0]]
|
||
|
edge_line = ax.plot(xs, ys, zs, '-', color='black')[0]
|
||
|
|
||
|
ax.scatter(pattern[:, 0], pattern[:, 1], pattern[:, 2], color='red', marker='o')
|
||
|
ax.legend(ax_lines + [edge_line], cam_ids + ['stereo pair'], fontsize=6)
|
||
|
|
||
|
dim_box = getDimBox(np.concatenate((all_pts)))
|
||
|
|
||
|
ax.set_xlim(dim_box[0])
|
||
|
ax.set_ylim(dim_box[1])
|
||
|
ax.set_zlim(dim_box[2])
|
||
|
|
||
|
aspect = (
|
||
|
dim_box[0, 1] - dim_box[0, 0],
|
||
|
dim_box[1, 1] - dim_box[1, 0],
|
||
|
dim_box[2, 1] - dim_box[2, 0],
|
||
|
)
|
||
|
ax.set_box_aspect(aspect)
|
||
|
|
||
|
ax.set_xlabel('x', fontsize=16)
|
||
|
ax.set_ylabel('y', fontsize=16)
|
||
|
ax.set_zlabel('z', fontsize=16)
|
||
|
|
||
|
ax.view_init(azim=90, elev=-40)
|
||
|
|
||
|
|
||
|
def showUndistorted(image_points, Ks, distortions, image_names):
|
||
|
detection_mask = getDetectionMask(image_points)
|
||
|
for cam in range(len(image_points)):
|
||
|
detected_imgs = np.where(detection_mask[cam])[0]
|
||
|
random_frame = np.random.RandomState(0).choice(detected_imgs, 1, replace=False)[0]
|
||
|
undistorted_pts = cv.undistortPoints(
|
||
|
image_points[cam][random_frame],
|
||
|
Ks[cam],
|
||
|
distortions[cam],
|
||
|
P=Ks[cam]
|
||
|
)[:,0]
|
||
|
|
||
|
fig = plt.figure()
|
||
|
if image_names is not None:
|
||
|
plt.imshow(cv.cvtColor(cv.undistort(
|
||
|
cv.imread(image_names[cam][random_frame]),
|
||
|
Ks[cam],
|
||
|
distortions[cam]
|
||
|
), cv.COLOR_BGR2RGB))
|
||
|
else:
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.set_aspect('equal', 'box')
|
||
|
ax.set_xlabel('x', fontsize=20)
|
||
|
ax.set_ylabel('y', fontsize=20)
|
||
|
|
||
|
plt.scatter(undistorted_pts[:,0], undistorted_pts[:,1], s=10)
|
||
|
plt.title(
|
||
|
f'Undistorted. Camera {cam_ids[cam]} frame {random_frame}',
|
||
|
loc='center',
|
||
|
wrap=True,
|
||
|
fontsize=16
|
||
|
)
|
||
|
|
||
|
save_file = f'undistorted_{cam_ids[cam]}.png'
|
||
|
print('Saving:', save_file)
|
||
|
plt.savefig(save_file)
|
||
|
|
||
|
|
||
|
def plotProjection(points_2d, pattern_points, rvec0, tvec0, rvec1, tvec1,
|
||
|
K, dist_coeff, is_fisheye, cam_idx, frame_idx, per_acc,
|
||
|
image=None):
|
||
|
rvec2, tvec2 = cv.composeRT(rvec0, tvec0, rvec1, tvec1)[:2]
|
||
|
|
||
|
if is_fisheye:
|
||
|
points_2d_est = cv.fisheye.projectPoints(
|
||
|
pattern_points[:, None], rvec2, tvec2, K, dist_coeff.flatten()
|
||
|
)[0].reshape(-1, 2)
|
||
|
else:
|
||
|
points_2d_est = cv.projectPoints(
|
||
|
pattern_points, rvec2, tvec2, K, dist_coeff
|
||
|
)[0].reshape(-1, 2)
|
||
|
|
||
|
fig = plt.figure()
|
||
|
errs = np.linalg.norm(points_2d - points_2d_est, axis=-1)
|
||
|
mean_err = errs.mean()
|
||
|
|
||
|
title = f"Comparison of given point (start) and back-projected (end). " \
|
||
|
f"Cam. {cam_idx} frame {frame_idx} mean err. (px) {mean_err:.1f}. " \
|
||
|
f"In top {per_acc:.0f}% accurate frames"
|
||
|
|
||
|
dist_pattern = np.linalg.norm(points_2d_est.min(0) - points_2d_est.max(0))
|
||
|
width = 2e-3 * dist_pattern
|
||
|
head_width = 5 * width
|
||
|
|
||
|
if image is None:
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.set_aspect('equal', 'box')
|
||
|
ax.set_xlabel('x', fontsize=20)
|
||
|
ax.set_ylabel('y', fontsize=20)
|
||
|
else:
|
||
|
plt.imshow(image)
|
||
|
ax = plt.gca()
|
||
|
|
||
|
num_colors = 8
|
||
|
cmap_fnc = lambda x : np.concatenate((x, 1-x, np.zeros_like(x)))
|
||
|
cmap = cmap_fnc(np.linspace(0, 1, num_colors)[None, :])
|
||
|
thrs = np.linspace(0, 10, num_colors)
|
||
|
arrows = [None] * num_colors
|
||
|
|
||
|
for k, (pt1, pt2) in enumerate(zip(points_2d, points_2d_est)):
|
||
|
color = cmap[:, -1]
|
||
|
for i, thr in enumerate(thrs):
|
||
|
if errs[k] < thr:
|
||
|
color = cmap[:, i]
|
||
|
break
|
||
|
arrow = ax.arrow(
|
||
|
pt1[0], pt1[1], pt2[0]-pt1[0], pt2[1]-pt1[1],
|
||
|
color=color, width=width, head_width=head_width,
|
||
|
)
|
||
|
for i, thr in enumerate(thrs):
|
||
|
if errs[k] < thr:
|
||
|
arrows[i] = arrow # type: ignore
|
||
|
break
|
||
|
|
||
|
legend, legend_str = [], []
|
||
|
for i in range(num_colors):
|
||
|
if arrows[i] is not None:
|
||
|
legend.append(arrows[i])
|
||
|
if i == 0:
|
||
|
legend_str.append(f'lower than {thrs[i]:.1f}')
|
||
|
elif i == num_colors-1:
|
||
|
legend_str.append(f'higher than {thrs[i]:.1f}')
|
||
|
else:
|
||
|
legend_str.append(f'between {thrs[i-1]:.1f} and {thrs[i]:.1f}')
|
||
|
|
||
|
ax.legend(legend, legend_str, fontsize=15)
|
||
|
ax.set_title(title, loc='center', wrap=True, fontsize=16)
|
||
|
|
||
|
|
||
|
def getDetectionMask(image_points):
|
||
|
detection_mask = np.zeros((len(image_points), len(image_points[0])), dtype=np.uint8)
|
||
|
# [detection_matrix]
|
||
|
for i in range(len(image_points)):
|
||
|
for j in range(len(image_points[0])):
|
||
|
detection_mask[i,j] = int(len(image_points[i][j]) != 0)
|
||
|
# [detection_matrix]
|
||
|
return detection_mask
|
||
|
|
||
|
|
||
|
def calibrateFromPoints(
|
||
|
pattern_points,
|
||
|
image_points,
|
||
|
image_sizes,
|
||
|
is_fisheye,
|
||
|
image_names=None,
|
||
|
find_intrinsics_in_python=False,
|
||
|
Ks=None,
|
||
|
distortions=None
|
||
|
):
|
||
|
"""
|
||
|
pattern_points: NUM_POINTS x 3 (numpy array)
|
||
|
image_points: NUM_CAMERAS x NUM_FRAMES x NUM_POINTS x 2
|
||
|
is_fisheye: NUM_CAMERAS (bool)
|
||
|
image_sizes: NUM_CAMERAS x [width, height]
|
||
|
"""
|
||
|
num_cameras = len(image_points)
|
||
|
num_frames = len(image_points[0])
|
||
|
detection_mask = getDetectionMask(image_points)
|
||
|
pattern_points_all = [pattern_points] * num_frames
|
||
|
with np.printoptions(threshold=np.inf): # type: ignore
|
||
|
print("detection mask Matrix:\n", str(detection_mask).replace('0\n ', '0').replace('1\n ', '1'))
|
||
|
|
||
|
#HACK: OpenCV API does not well support mix of fisheye and pinhole models.
|
||
|
# Pinhole models with rational distortion model is used instead
|
||
|
fisheyes = np.count_nonzero(is_fisheye)
|
||
|
intrinsics_flag = 0
|
||
|
if (fisheyes > 0) and (fisheyes != num_cameras):
|
||
|
intrinsics_flag = cv.CALIB_RATIONAL_MODEL + cv.CALIB_ZERO_TANGENT_DIST + cv.CALIB_FIX_K5 + cv.CALIB_FIX_K6
|
||
|
|
||
|
if Ks is not None and distortions is not None:
|
||
|
USE_INTRINSICS_GUESS = True
|
||
|
else:
|
||
|
USE_INTRINSICS_GUESS = find_intrinsics_in_python
|
||
|
if find_intrinsics_in_python:
|
||
|
Ks, distortions = [], []
|
||
|
for c in range(num_cameras):
|
||
|
if is_fisheye[c]:
|
||
|
image_points_c = [
|
||
|
image_points[c][f][:, None] for f in range(num_frames) if len(image_points[c][f]) > 0
|
||
|
]
|
||
|
repr_err_c, K, dist_coeff, _, _ = cv.fisheye.calibrate(
|
||
|
[pattern_points[:, None]] * len(image_points_c),
|
||
|
image_points_c,
|
||
|
image_sizes[c],
|
||
|
None,
|
||
|
None
|
||
|
)
|
||
|
else:
|
||
|
image_points_c = [
|
||
|
image_points[c][f] for f in range(num_frames) if len(image_points[c][f]) > 0
|
||
|
]
|
||
|
repr_err_c, K, dist_coeff, _, _ = cv.calibrateCamera(
|
||
|
[pattern_points] * len(image_points_c),
|
||
|
image_points_c,
|
||
|
image_sizes[c],
|
||
|
None,
|
||
|
None,
|
||
|
flags=intrinsics_flag
|
||
|
)
|
||
|
print(f'Intrinsics calibration for camera {c}, reproj error {repr_err_c:.2f} (px)')
|
||
|
Ks.append(K)
|
||
|
distortions.append(dist_coeff)
|
||
|
|
||
|
start_time = time.time()
|
||
|
# try:
|
||
|
# [multiview_calib]
|
||
|
rmse, rvecs, Ts, Ks, distortions, rvecs0, tvecs0, errors_per_frame, output_pairs = \
|
||
|
cv.calibrateMultiview(
|
||
|
objPoints=pattern_points_all,
|
||
|
imagePoints=image_points,
|
||
|
imageSize=image_sizes,
|
||
|
detectionMask=detection_mask,
|
||
|
Ks=Ks,
|
||
|
distortions=distortions,
|
||
|
isFisheye=np.array(is_fisheye, dtype=np.uint8),
|
||
|
useIntrinsicsGuess=USE_INTRINSICS_GUESS,
|
||
|
flagsForIntrinsics=np.full((num_cameras), intrinsics_flag, dtype=int)
|
||
|
)
|
||
|
# [multiview_calib]
|
||
|
# except Exception as e:
|
||
|
# print("Multi-view calibration failed with the following exception:", e.__class__)
|
||
|
# sys.exit(0)
|
||
|
|
||
|
print('calibration time', time.time() - start_time, 'seconds')
|
||
|
print('rvecs', rvecs)
|
||
|
print('tvecs', Ts)
|
||
|
print('K', Ks)
|
||
|
print('distortion', distortions)
|
||
|
print('mean RMS error over all visible frames %.3E' % rmse)
|
||
|
|
||
|
with np.printoptions(precision=2):
|
||
|
print('mean RMS errors per camera', np.array([np.mean(errs[errs > 0]) for errs in errors_per_frame]))
|
||
|
|
||
|
return {
|
||
|
'rvecs': rvecs,
|
||
|
'distortions': distortions,
|
||
|
'Ks': Ks,
|
||
|
'Ts': Ts,
|
||
|
'rvecs0': rvecs0,
|
||
|
'tvecs0': tvecs0,
|
||
|
'errors_per_frame': errors_per_frame,
|
||
|
'output_pairs': output_pairs,
|
||
|
'image_points': image_points,
|
||
|
'is_fisheye': is_fisheye,
|
||
|
'image_sizes': image_sizes,
|
||
|
'pattern_points': pattern_points,
|
||
|
'detection_mask': detection_mask,
|
||
|
'image_names': image_names,
|
||
|
}
|
||
|
|
||
|
|
||
|
def visualizeResults(detection_mask, rvecs, Ts, Ks, distortions, is_fisheye,
|
||
|
image_points, errors_per_frame, rvecs0, tvecs0,
|
||
|
pattern_points, image_sizes, output_pairs, image_names, cam_ids):
|
||
|
Rs = [cv.Rodrigues(rvec)[0] for rvec in rvecs]
|
||
|
errors = errors_per_frame[errors_per_frame > 0]
|
||
|
detection_mask_idxs = np.stack(np.where(detection_mask)) # 2 x M, first row is camera idx, second is frame idx
|
||
|
|
||
|
# Get very first frame from first camera
|
||
|
frame_idx = detection_mask_idxs[1, 0]
|
||
|
R_frame = cv.Rodrigues(rvecs0[frame_idx])[0]
|
||
|
pattern_frame = (R_frame @ pattern_points.T + tvecs0[frame_idx]).T
|
||
|
plotCamerasPosition(Rs, Ts, image_sizes, output_pairs, pattern_frame, frame_idx, cam_ids)
|
||
|
|
||
|
save_file = 'cam_poses.png'
|
||
|
print('Saving:', save_file)
|
||
|
plt.savefig(save_file, dpi=300, bbox_inches='tight')
|
||
|
|
||
|
# Generate and save undistorted images
|
||
|
def plot(cam_idx, frame_idx):
|
||
|
image = None
|
||
|
if image_names is not None:
|
||
|
image = cv.cvtColor(cv.imread(image_names[cam_idx][frame_idx]), cv.COLOR_BGR2RGB)
|
||
|
plotProjection(
|
||
|
image_points[cam_idx][frame_idx],
|
||
|
pattern_points,
|
||
|
rvecs0[frame_idx],
|
||
|
tvecs0[frame_idx],
|
||
|
rvecs[cam_idx],
|
||
|
Ts[cam_idx],
|
||
|
Ks[cam_idx],
|
||
|
distortions[cam_idx],
|
||
|
is_fisheye[cam_idx],
|
||
|
cam_idx,
|
||
|
frame_idx,
|
||
|
(errors_per_frame[cam_idx, frame_idx] < errors).sum() * 100 / len(errors),
|
||
|
image,
|
||
|
)
|
||
|
|
||
|
plot(detection_mask_idxs[0, 0], detection_mask_idxs[1, 0])
|
||
|
showUndistorted(image_points, Ks, distortions, image_names)
|
||
|
# plt.show()
|
||
|
|
||
|
|
||
|
def visualizeFromFile(file):
|
||
|
file_read = cv.FileStorage(file, cv.FileStorage_READ)
|
||
|
assert file_read.isOpened(), file
|
||
|
read_keys = [
|
||
|
'rvecs', 'distortions', 'Ks', 'Ts', 'rvecs0', 'tvecs0',
|
||
|
'errors_per_frame', 'output_pairs', 'image_points', 'is_fisheye',
|
||
|
'image_sizes', 'pattern_points', 'detection_mask', 'cam_ids',
|
||
|
]
|
||
|
input = {}
|
||
|
for key in read_keys:
|
||
|
input[key] = file_read.getNode(key).mat()
|
||
|
|
||
|
im_names_len = file_read.getNode('image_names').size()
|
||
|
input['image_names'] = np.array(
|
||
|
[file_read.getNode('image_names').at(i).string() for i in range(im_names_len)]
|
||
|
).reshape(input['image_points'].shape[:2])
|
||
|
|
||
|
input['tvecs0'] = input['tvecs0'][..., None]
|
||
|
input['Ts'] = input['Ts'][..., None]
|
||
|
visualizeResults(**input)
|
||
|
|
||
|
|
||
|
def saveToFile(path_to_save, **kwargs):
|
||
|
if path_to_save == '':
|
||
|
path_to_save = datetime.now().strftime("%d-%b-%Y (%H:%M:%S.%f)")+'.yaml'
|
||
|
save_file = cv.FileStorage(path_to_save, cv.FileStorage_WRITE)
|
||
|
|
||
|
kwargs['is_fisheye'] = np.array(kwargs['is_fisheye'], dtype=int)
|
||
|
image_points = kwargs['image_points']
|
||
|
|
||
|
for i in range(len(image_points)):
|
||
|
for j in range(len(image_points[0])):
|
||
|
if len(image_points[i][j]) == 0:
|
||
|
image_points[i][j] = np.zeros((kwargs['pattern_points'].shape[0], 2))
|
||
|
|
||
|
for key in kwargs.keys():
|
||
|
if key == 'image_names':
|
||
|
save_file.write('image_names', list(np.array(kwargs['image_names']).reshape(-1)))
|
||
|
elif key == 'cam_ids':
|
||
|
save_file.write('cam_ids', ','.join(cam_ids))
|
||
|
else:
|
||
|
value = kwargs[key]
|
||
|
if key in ('rvecs0', 'tvecs0'):
|
||
|
# Replace None by [0, 0, 0]
|
||
|
value = [arr if arr is not None else np.zeros((3, 1)) for arr in value]
|
||
|
save_file.write(key, np.array(value))
|
||
|
|
||
|
save_file.release()
|
||
|
|
||
|
|
||
|
def chessboard_points(grid_size, dist_m):
|
||
|
pattern = np.zeros((grid_size[0] * grid_size[1], 3), np.float32)
|
||
|
pattern[:, :2] = np.mgrid[0:grid_size[0], 0:grid_size[1]].T.reshape(-1, 2) * dist_m # only for (x,y,z=0)
|
||
|
return pattern
|
||
|
|
||
|
|
||
|
def circles_grid_points(grid_size, dist_m):
|
||
|
pattern = []
|
||
|
for i in range(grid_size[0]):
|
||
|
for j in range(grid_size[1]):
|
||
|
pattern.append([j * dist_m, i * dist_m, 0])
|
||
|
return np.array(pattern, dtype=np.float32)
|
||
|
|
||
|
|
||
|
def asym_circles_grid_points(grid_size, dist_m):
|
||
|
pattern = []
|
||
|
for i in range(grid_size[1]):
|
||
|
for j in range(grid_size[0]):
|
||
|
if i % 2 == 1:
|
||
|
pattern.append([(j + .5)*dist_m, dist_m*(i//2 + .5), 0])
|
||
|
else:
|
||
|
pattern.append([j*dist_m, (i//2)*dist_m, 0])
|
||
|
return np.array(pattern, dtype=np.float32)
|
||
|
|
||
|
|
||
|
def detect(cam_idx, frame_idx, img_name, pattern_type,
|
||
|
grid_size, criteria, winsize, RESIZE_IMAGE):
|
||
|
# print(img_name)
|
||
|
assert os.path.exists(img_name), img_name
|
||
|
img = cv.imread(img_name)
|
||
|
img_size = img.shape[:2][::-1]
|
||
|
|
||
|
scale = 1.0
|
||
|
img_detection = img
|
||
|
if RESIZE_IMAGE:
|
||
|
scale = 1000.0 / max(img.shape[0], img.shape[1])
|
||
|
if scale < 1.0:
|
||
|
img_detection = cv.resize(
|
||
|
img,
|
||
|
(int(scale * img.shape[1]), int(scale * img.shape[0])),
|
||
|
interpolation=cv.INTER_AREA
|
||
|
)
|
||
|
# [detect_pattern]
|
||
|
if pattern_type.lower() == 'checkerboard':
|
||
|
ret, corners = cv.findChessboardCorners(
|
||
|
cv.cvtColor(img_detection, cv.COLOR_BGR2GRAY), grid_size, None
|
||
|
)
|
||
|
if ret:
|
||
|
if scale < 1.0:
|
||
|
corners /= scale
|
||
|
corners2 = cv.cornerSubPix(cv.cvtColor(img, cv.COLOR_BGR2GRAY),
|
||
|
corners, winsize, (-1,-1), criteria)
|
||
|
|
||
|
elif pattern_type.lower() == 'circles':
|
||
|
ret, corners = cv.findCirclesGrid(
|
||
|
img_detection, patternSize=grid_size, flags=cv.CALIB_CB_SYMMETRIC_GRID
|
||
|
)
|
||
|
if ret:
|
||
|
corners2 = corners / scale
|
||
|
|
||
|
elif pattern_type.lower() == 'acircles':
|
||
|
ret, corners = cv.findCirclesGrid(
|
||
|
img_detection, patternSize=grid_size, flags=cv.CALIB_CB_ASYMMETRIC_GRID
|
||
|
)
|
||
|
if ret:
|
||
|
corners2 = corners / scale
|
||
|
else:
|
||
|
raise ValueError("Calibration pattern is not supported!")
|
||
|
# [detect_pattern]
|
||
|
if ret:
|
||
|
# cv.drawChessboardCorners(img, grid_size, corners2, ret)
|
||
|
# plt.imshow(img)
|
||
|
# plt.show()
|
||
|
return cam_idx, frame_idx, img_size, np.array(corners2, dtype=np.float32).reshape(-1, 2)
|
||
|
else:
|
||
|
# plt.imshow(img_detection)
|
||
|
# plt.show()
|
||
|
return cam_idx, frame_idx, img_size, np.array([], dtype=np.float32)
|
||
|
|
||
|
|
||
|
def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye,
|
||
|
dist_m, winsize, points_json_file, debug_corners,
|
||
|
RESIZE_IMAGE, find_intrinsics_in_python,
|
||
|
is_parallel_detection=True, cam_ids=None, intrinsics_dir=''):
|
||
|
"""
|
||
|
files_with_images: NUM_CAMERAS - path to file containing image names (NUM_FRAMES)
|
||
|
grid_size: [width, height] -- size of grid pattern
|
||
|
dist_m: length of a grid cell
|
||
|
is_fisheye: NUM_CAMERAS (bool)
|
||
|
"""
|
||
|
# [calib_init]
|
||
|
if pattern_type.lower() == 'checkerboard':
|
||
|
pattern = chessboard_points(grid_size, dist_m)
|
||
|
elif pattern_type.lower() == 'circles':
|
||
|
pattern = circles_grid_points(grid_size, dist_m)
|
||
|
elif pattern_type.lower() == 'acircles':
|
||
|
pattern = asym_circles_grid_points(grid_size, dist_m)
|
||
|
else:
|
||
|
raise NotImplementedError("Pattern type is not implemented!")
|
||
|
# [calib_init]
|
||
|
|
||
|
assert len(files_with_images) == len(is_fisheye) and len(grid_size) == 2
|
||
|
if cam_ids is None:
|
||
|
cam_ids = list(range(len(files_with_images)))
|
||
|
|
||
|
all_images_names, input_data = [], []
|
||
|
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 50, 0.001)
|
||
|
for cam_idx, filename in enumerate(files_with_images):
|
||
|
assert os.path.exists(filename), filename
|
||
|
print('cam_id:', cam_ids[cam_idx])
|
||
|
|
||
|
images_names = open(filename, 'r').readlines()
|
||
|
for i in range(len(images_names)):
|
||
|
images_names[i] = images_names[i].replace('\n', '')
|
||
|
all_images_names.append(images_names)
|
||
|
if cam_idx > 0:
|
||
|
# same number of images per file
|
||
|
assert len(images_names) == len(all_images_names[-1])
|
||
|
for frame_idx, img_name in enumerate(images_names):
|
||
|
input_data.append([cam_idx, frame_idx, img_name])
|
||
|
|
||
|
image_sizes = [None] * len(files_with_images)
|
||
|
image_points_cameras = [[None] * len(images_names) for _ in files_with_images]
|
||
|
|
||
|
if is_parallel_detection:
|
||
|
parallel_job = joblib.Parallel(n_jobs=multiprocessing.cpu_count())
|
||
|
output = parallel_job(
|
||
|
joblib.delayed(detect)(
|
||
|
cam_idx, frame_idx, img_name, pattern_type,
|
||
|
grid_size, criteria, winsize, RESIZE_IMAGE
|
||
|
) for cam_idx, frame_idx, img_name in input_data
|
||
|
)
|
||
|
assert output is not None
|
||
|
for cam_idx, frame_idx, img_size, corners in output:
|
||
|
image_points_cameras[cam_idx][frame_idx] = corners
|
||
|
if image_sizes[cam_idx] is None:
|
||
|
image_sizes[cam_idx] = img_size
|
||
|
else:
|
||
|
for cam_idx, frame_idx, img_name in input_data:
|
||
|
_, _, img_size, corners = detect(
|
||
|
cam_idx, frame_idx, img_name, pattern_type,
|
||
|
grid_size, criteria, winsize, RESIZE_IMAGE
|
||
|
)
|
||
|
image_points_cameras[cam_idx][frame_idx] = corners
|
||
|
if image_sizes[cam_idx] is None:
|
||
|
image_sizes[cam_idx] = img_size
|
||
|
|
||
|
if debug_corners:
|
||
|
# plots random image frames with detected points
|
||
|
num_random_plots = 5
|
||
|
visible_frames = []
|
||
|
for c, pts_cam in enumerate(image_points_cameras):
|
||
|
for f, pts_frame in enumerate(pts_cam):
|
||
|
if pts_frame is not None:
|
||
|
visible_frames.append((c,f))
|
||
|
random_images = np.random.RandomState(0).choice(
|
||
|
range(len(visible_frames)), min(num_random_plots, len(visible_frames))
|
||
|
)
|
||
|
for idx in random_images:
|
||
|
c, f = visible_frames[idx]
|
||
|
img = cv.cvtColor(cv.imread(all_images_names[c][f]), cv.COLOR_BGR2RGB)
|
||
|
cv.drawChessboardCorners(img, grid_size, image_points_cameras[c][f], True)
|
||
|
plt.figure()
|
||
|
plt.imshow(img)
|
||
|
plt.show()
|
||
|
|
||
|
if points_json_file:
|
||
|
image_points_cameras_list = []
|
||
|
for pts_cam in image_points_cameras:
|
||
|
cam_pts = []
|
||
|
for pts_frame in pts_cam:
|
||
|
if pts_frame is not None:
|
||
|
cam_pts.append(pts_frame.tolist())
|
||
|
else:
|
||
|
cam_pts.append([])
|
||
|
image_points_cameras_list.append(cam_pts)
|
||
|
|
||
|
with open(points_json_file, 'w') as wf:
|
||
|
json.dump({
|
||
|
'object_points': pattern.tolist(),
|
||
|
'image_points': image_points_cameras_list,
|
||
|
'image_sizes': image_sizes,
|
||
|
'is_fisheye': is_fisheye,
|
||
|
}, wf)
|
||
|
|
||
|
Ks = None
|
||
|
distortions = None
|
||
|
if intrinsics_dir:
|
||
|
# Read camera instrinsic matrices (Ks) and dictortions
|
||
|
Ks, distortions = [], []
|
||
|
for cam_id in cam_ids:
|
||
|
input_file = os.path.join(intrinsics_dir, f"cameraParameters_{cam_id}.xml")
|
||
|
print("Reading intrinsics from", input_file)
|
||
|
storage = cv.FileStorage(input_file, cv.FileStorage_READ)
|
||
|
camera_matrix = storage.getNode('cameraMatrix').mat()
|
||
|
dist_coeffs = storage.getNode('dist_coeffs').mat()
|
||
|
Ks.append(camera_matrix)
|
||
|
distortions.append(dist_coeffs)
|
||
|
find_intrinsics_in_python = True
|
||
|
|
||
|
return calibrateFromPoints(
|
||
|
pattern,
|
||
|
image_points_cameras,
|
||
|
image_sizes,
|
||
|
is_fisheye,
|
||
|
all_images_names,
|
||
|
find_intrinsics_in_python,
|
||
|
Ks=Ks,
|
||
|
distortions=distortions,
|
||
|
)
|
||
|
|
||
|
|
||
|
def calibrateFromJSON(json_file, find_intrinsics_in_python):
|
||
|
assert os.path.exists(json_file)
|
||
|
data = json.load(open(json_file, 'r'))
|
||
|
|
||
|
for i in range(len(data['image_points'])):
|
||
|
for j in range(len(data['image_points'][i])):
|
||
|
data['image_points'][i][j] = np.array(data['image_points'][i][j], dtype=np.float32)
|
||
|
|
||
|
Ks = data['Ks'] if 'Ks' in data else None
|
||
|
distortions = data['distortions'] if 'distortions' in data else None
|
||
|
images_names = data['images_names'] if 'images_names' in data else None
|
||
|
|
||
|
return calibrateFromPoints(
|
||
|
np.array(data['object_points'], dtype=np.float32).T,
|
||
|
data['image_points'],
|
||
|
data['image_sizes'],
|
||
|
data['is_fisheye'],
|
||
|
images_names,
|
||
|
find_intrinsics_in_python,
|
||
|
Ks,
|
||
|
distortions,
|
||
|
)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--json_file', type=str, default=None, help="json file with all data. Must have keys: 'object_points', 'image_points', 'image_sizes', 'is_fisheye'")
|
||
|
parser.add_argument('--filenames', type=str, default=None, help='Txt files containg image lists, e.g., cam_1.txt,cam_2.txt,...,cam_N.txt for N cameras')
|
||
|
parser.add_argument('--pattern_size', type=str, default=None, help='pattern size: width,height')
|
||
|
parser.add_argument('--pattern_type', type=str, default=None, help='supported: checkeboard, circles, acircles')
|
||
|
parser.add_argument('--fisheye', type=str, default=None, help='fisheye mask, e.g., 0,1,...')
|
||
|
parser.add_argument('--pattern_distance', type=float, default=None, help='distance between object / pattern points')
|
||
|
parser.add_argument('--find_intrinsics_in_python', required=False, action='store_true', help='calibrate intrinsics in Python sample instead of C++')
|
||
|
parser.add_argument('--winsize', type=str, default='5,5', help='window size for corners detection: w,h')
|
||
|
parser.add_argument('--debug_corners', required=False, action='store_true', help='debug flag for corners detection visualization of images')
|
||
|
parser.add_argument('--points_json_file', type=str, default='', help='if path is provided then image and object points will be saved to JSON file.')
|
||
|
parser.add_argument('--path_to_save', type=str, default='', help='path and filename to save results in yaml file')
|
||
|
parser.add_argument('--path_to_visualize', type=str, default='', help='path to results pickle file needed to run visualization')
|
||
|
parser.add_argument('--visualize', required=False, action='store_true', help='visualization flag. If set, only runs visualization but path_to_visualize must be provided')
|
||
|
parser.add_argument('--resize_image_detection', required=False, action='store_true', help='If set, an image will be resized to speed-up corners detection')
|
||
|
parser.add_argument('--intrinsics_dir', type=str, default='', help='Path to measured intrinsics')
|
||
|
|
||
|
params, _ = parser.parse_known_args()
|
||
|
|
||
|
if params.visualize:
|
||
|
assert os.path.exists(params.path_to_visualize), f'Path to result file does not exist: {params.path_to_visualize}'
|
||
|
visualizeFromFile(params.path_to_visualize)
|
||
|
sys.exit(0)
|
||
|
|
||
|
if params.filenames is None:
|
||
|
cam_files = sorted(glob.glob('cam_*.txt'))
|
||
|
params.filenames = ','.join(cam_files)
|
||
|
print('Found camera filenames:', params.filenames)
|
||
|
params.fisheye = ','.join('0' * len(cam_files))
|
||
|
print('Fisheye parameters:', params.fisheye) # TODO: Calculate it automatically
|
||
|
|
||
|
if params.json_file is not None:
|
||
|
output = calibrateFromJSON(params.json_file, params.find_intrinsics_in_python)
|
||
|
else:
|
||
|
if (params.pattern_type is None and params.pattern_size is None and params.pattern_distance is None):
|
||
|
assert False and 'Either json file or all other parameters must be set'
|
||
|
|
||
|
# cam_N.txt --> cam_N --> N
|
||
|
cam_ids = [os.path.splitext(f)[0].split('_')[-1] for f in params.filenames.split(',')]
|
||
|
|
||
|
output = calibrateFromImages(
|
||
|
files_with_images=params.filenames.split(','),
|
||
|
grid_size=[int(v) for v in params.pattern_size.split(',')],
|
||
|
pattern_type=params.pattern_type,
|
||
|
is_fisheye=[bool(int(v)) for v in params.fisheye.split(',')],
|
||
|
dist_m=params.pattern_distance,
|
||
|
winsize=tuple([int(v) for v in params.winsize.split(',')]),
|
||
|
points_json_file=params.points_json_file,
|
||
|
debug_corners=params.debug_corners,
|
||
|
RESIZE_IMAGE=params.resize_image_detection,
|
||
|
find_intrinsics_in_python=params.find_intrinsics_in_python,
|
||
|
cam_ids=cam_ids,
|
||
|
intrinsics_dir=params.intrinsics_dir,
|
||
|
)
|
||
|
output['cam_ids'] = cam_ids
|
||
|
|
||
|
visualizeResults(**output)
|
||
|
|
||
|
print('Saving:', params.path_to_save)
|
||
|
saveToFile(params.path_to_save, **output)
|