mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 16:00:17 +08:00
228 lines
7.5 KiB
C++
228 lines
7.5 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// @Authors
|
||
|
// Peng Xiao, pengxiao@multicorewareinc.com
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other oclMaterials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors as is and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#ifdef HAVE_OPENCL
|
||
|
|
||
|
extern std::string workdir;
|
||
|
|
||
|
using namespace std;
|
||
|
|
||
|
static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
||
|
{
|
||
|
const double maxPtDif = 1.0;
|
||
|
const double maxSizeDif = 1.0;
|
||
|
const double maxAngleDif = 2.0;
|
||
|
const double maxResponseDif = 0.1;
|
||
|
|
||
|
double dist = cv::norm(p1.pt - p2.pt);
|
||
|
|
||
|
if (dist < maxPtDif &&
|
||
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
||
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||
|
abs(p1.response - p2.response) < maxResponseDif &&
|
||
|
p1.octave == p2.octave &&
|
||
|
p1.class_id == p2.class_id)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
|
||
|
{
|
||
|
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
|
||
|
{
|
||
|
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
|
||
|
|
||
|
static int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
||
|
{
|
||
|
std::sort(actual.begin(), actual.end(), KeyPointLess());
|
||
|
std::sort(gold.begin(), gold.end(), KeyPointLess());
|
||
|
|
||
|
int validCount = 0;
|
||
|
|
||
|
for (size_t i = 0; i < gold.size(); ++i)
|
||
|
{
|
||
|
const cv::KeyPoint& p1 = gold[i];
|
||
|
const cv::KeyPoint& p2 = actual[i];
|
||
|
|
||
|
if (keyPointsEquals(p1, p2))
|
||
|
++validCount;
|
||
|
}
|
||
|
|
||
|
return validCount;
|
||
|
}
|
||
|
|
||
|
static int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
||
|
{
|
||
|
int validCount = 0;
|
||
|
|
||
|
for (size_t i = 0; i < matches.size(); ++i)
|
||
|
{
|
||
|
const cv::DMatch& m = matches[i];
|
||
|
|
||
|
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
||
|
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
||
|
|
||
|
if (keyPointsEquals(p1, p2))
|
||
|
++validCount;
|
||
|
}
|
||
|
|
||
|
return validCount;
|
||
|
}
|
||
|
|
||
|
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
|
||
|
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
|
||
|
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
|
||
|
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
|
||
|
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
|
||
|
|
||
|
PARAM_TEST_CASE(SURF, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
|
||
|
{
|
||
|
double hessianThreshold;
|
||
|
int nOctaves;
|
||
|
int nOctaveLayers;
|
||
|
bool extended;
|
||
|
bool upright;
|
||
|
|
||
|
virtual void SetUp()
|
||
|
{
|
||
|
hessianThreshold = GET_PARAM(0);
|
||
|
nOctaves = GET_PARAM(1);
|
||
|
nOctaveLayers = GET_PARAM(2);
|
||
|
extended = GET_PARAM(3);
|
||
|
upright = GET_PARAM(4);
|
||
|
}
|
||
|
};
|
||
|
TEST_P(SURF, Detector)
|
||
|
{
|
||
|
cv::Mat image = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE);
|
||
|
ASSERT_FALSE(image.empty());
|
||
|
|
||
|
cv::ocl::SURF_OCL surf;
|
||
|
surf.hessianThreshold = static_cast<float>(hessianThreshold);
|
||
|
surf.nOctaves = nOctaves;
|
||
|
surf.nOctaveLayers = nOctaveLayers;
|
||
|
surf.extended = extended;
|
||
|
surf.upright = upright;
|
||
|
surf.keypointsRatio = 0.05f;
|
||
|
|
||
|
std::vector<cv::KeyPoint> keypoints;
|
||
|
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints);
|
||
|
|
||
|
cv::SURF surf_gold;
|
||
|
surf_gold.hessianThreshold = hessianThreshold;
|
||
|
surf_gold.nOctaves = nOctaves;
|
||
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
||
|
surf_gold.extended = extended;
|
||
|
surf_gold.upright = upright;
|
||
|
|
||
|
std::vector<cv::KeyPoint> keypoints_gold;
|
||
|
surf_gold(image, cv::noArray(), keypoints_gold);
|
||
|
|
||
|
ASSERT_EQ(keypoints_gold.size(), keypoints.size());
|
||
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints);
|
||
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size();
|
||
|
|
||
|
EXPECT_GT(matchedRatio, 0.95);
|
||
|
}
|
||
|
|
||
|
TEST_P(SURF, Descriptor)
|
||
|
{
|
||
|
cv::Mat image = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE);
|
||
|
ASSERT_FALSE(image.empty());
|
||
|
|
||
|
cv::ocl::SURF_OCL surf;
|
||
|
surf.hessianThreshold = static_cast<float>(hessianThreshold);
|
||
|
surf.nOctaves = nOctaves;
|
||
|
surf.nOctaveLayers = nOctaveLayers;
|
||
|
surf.extended = extended;
|
||
|
surf.upright = upright;
|
||
|
surf.keypointsRatio = 0.05f;
|
||
|
|
||
|
cv::SURF surf_gold;
|
||
|
surf_gold.hessianThreshold = hessianThreshold;
|
||
|
surf_gold.nOctaves = nOctaves;
|
||
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
||
|
surf_gold.extended = extended;
|
||
|
surf_gold.upright = upright;
|
||
|
|
||
|
std::vector<cv::KeyPoint> keypoints;
|
||
|
surf_gold(image, cv::noArray(), keypoints);
|
||
|
|
||
|
cv::ocl::oclMat descriptors;
|
||
|
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints, descriptors, true);
|
||
|
|
||
|
cv::Mat descriptors_gold;
|
||
|
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
|
||
|
|
||
|
cv::BFMatcher matcher(cv::NORM_L2);
|
||
|
std::vector<cv::DMatch> matches;
|
||
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
||
|
|
||
|
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
|
||
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
||
|
|
||
|
EXPECT_GT(matchedRatio, 0.35);
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine(
|
||
|
testing::Values(/*SURF_HessianThreshold(100.0), */SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)),
|
||
|
testing::Values(SURF_Octaves(3), SURF_Octaves(4)),
|
||
|
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)),
|
||
|
testing::Values(SURF_Extended(false), SURF_Extended(true)),
|
||
|
testing::Values(SURF_Upright(false), SURF_Upright(true))));
|
||
|
|
||
|
#endif
|