mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
191 lines
6.5 KiB
C
191 lines
6.5 KiB
C
|
///////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
||
|
// Digital Ltd. LLC
|
||
|
//
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Industrial Light & Magic nor the names of
|
||
|
// its contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
|
||
|
|
||
|
#ifndef INCLUDED_IMATHFRAME_H
|
||
|
#define INCLUDED_IMATHFRAME_H
|
||
|
|
||
|
namespace Imath {
|
||
|
|
||
|
template<class T> class Vec3;
|
||
|
template<class T> class Matrix44;
|
||
|
|
||
|
//
|
||
|
// These methods compute a set of reference frames, defined by their
|
||
|
// transformation matrix, along a curve. It is designed so that the
|
||
|
// array of points and the array of matrices used to fetch these routines
|
||
|
// don't need to be ordered as the curve.
|
||
|
//
|
||
|
// A typical usage would be :
|
||
|
//
|
||
|
// m[0] = Imath::firstFrame( p[0], p[1], p[2] );
|
||
|
// for( int i = 1; i < n - 1; i++ )
|
||
|
// {
|
||
|
// m[i] = Imath::nextFrame( m[i-1], p[i-1], p[i], t[i-1], t[i] );
|
||
|
// }
|
||
|
// m[n-1] = Imath::lastFrame( m[n-2], p[n-2], p[n-1] );
|
||
|
//
|
||
|
// See Graphics Gems I for the underlying algorithm.
|
||
|
//
|
||
|
|
||
|
template<class T> Matrix44<T> firstFrame( const Vec3<T>&, // First point
|
||
|
const Vec3<T>&, // Second point
|
||
|
const Vec3<T>& ); // Third point
|
||
|
|
||
|
template<class T> Matrix44<T> nextFrame( const Matrix44<T>&, // Previous matrix
|
||
|
const Vec3<T>&, // Previous point
|
||
|
const Vec3<T>&, // Current point
|
||
|
Vec3<T>&, // Previous tangent
|
||
|
Vec3<T>& ); // Current tangent
|
||
|
|
||
|
template<class T> Matrix44<T> lastFrame( const Matrix44<T>&, // Previous matrix
|
||
|
const Vec3<T>&, // Previous point
|
||
|
const Vec3<T>& ); // Last point
|
||
|
|
||
|
//
|
||
|
// firstFrame - Compute the first reference frame along a curve.
|
||
|
//
|
||
|
// This function returns the transformation matrix to the reference frame
|
||
|
// defined by the three points 'pi', 'pj' and 'pk'. Note that if the two
|
||
|
// vectors <pi,pj> and <pi,pk> are colinears, an arbitrary twist value will
|
||
|
// be choosen.
|
||
|
//
|
||
|
// Throw 'NullVecExc' if 'pi' and 'pj' are equals.
|
||
|
//
|
||
|
|
||
|
template<class T> Matrix44<T> firstFrame
|
||
|
(
|
||
|
const Vec3<T>& pi, // First point
|
||
|
const Vec3<T>& pj, // Second point
|
||
|
const Vec3<T>& pk ) // Third point
|
||
|
{
|
||
|
Vec3<T> t = pj - pi; t.normalizeExc();
|
||
|
|
||
|
Vec3<T> n = t.cross( pk - pi ); n.normalize();
|
||
|
if( n.length() == 0.0f )
|
||
|
{
|
||
|
int i = fabs( t[0] ) < fabs( t[1] ) ? 0 : 1;
|
||
|
if( fabs( t[2] ) < fabs( t[i] )) i = 2;
|
||
|
|
||
|
Vec3<T> v( 0.0, 0.0, 0.0 ); v[i] = 1.0;
|
||
|
n = t.cross( v ); n.normalize();
|
||
|
}
|
||
|
|
||
|
Vec3<T> b = t.cross( n );
|
||
|
|
||
|
Matrix44<T> M;
|
||
|
|
||
|
M[0][0] = t[0]; M[0][1] = t[1]; M[0][2] = t[2]; M[0][3] = 0.0,
|
||
|
M[1][0] = n[0]; M[1][1] = n[1]; M[1][2] = n[2]; M[1][3] = 0.0,
|
||
|
M[2][0] = b[0]; M[2][1] = b[1]; M[2][2] = b[2]; M[2][3] = 0.0,
|
||
|
M[3][0] = pi[0]; M[3][1] = pi[1]; M[3][2] = pi[2]; M[3][3] = 1.0;
|
||
|
|
||
|
return M;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// nextFrame - Compute the next reference frame along a curve.
|
||
|
//
|
||
|
// This function returns the transformation matrix to the next reference
|
||
|
// frame defined by the previously computed transformation matrix and the
|
||
|
// new point and tangent vector along the curve.
|
||
|
//
|
||
|
|
||
|
template<class T> Matrix44<T> nextFrame
|
||
|
(
|
||
|
const Matrix44<T>& Mi, // Previous matrix
|
||
|
const Vec3<T>& pi, // Previous point
|
||
|
const Vec3<T>& pj, // Current point
|
||
|
Vec3<T>& ti, // Previous tangent vector
|
||
|
Vec3<T>& tj ) // Current tangent vector
|
||
|
{
|
||
|
Vec3<T> a(0.0, 0.0, 0.0); // Rotation axis.
|
||
|
T r = 0.0; // Rotation angle.
|
||
|
|
||
|
if( ti.length() != 0.0 && tj.length() != 0.0 )
|
||
|
{
|
||
|
ti.normalize(); tj.normalize();
|
||
|
T dot = ti.dot( tj );
|
||
|
|
||
|
//
|
||
|
// This is *really* necessary :
|
||
|
//
|
||
|
|
||
|
if( dot > 1.0 ) dot = 1.0;
|
||
|
else if( dot < -1.0 ) dot = -1.0;
|
||
|
|
||
|
r = acosf( dot );
|
||
|
a = ti.cross( tj );
|
||
|
}
|
||
|
|
||
|
if( a.length() != 0.0 && r != 0.0 )
|
||
|
{
|
||
|
Matrix44<T> R; R.setAxisAngle( a, r );
|
||
|
Matrix44<T> Tj; Tj.translate( pj );
|
||
|
Matrix44<T> Ti; Ti.translate( -pi );
|
||
|
|
||
|
return Mi * Ti * R * Tj;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Matrix44<T> Tr; Tr.translate( pj - pi );
|
||
|
|
||
|
return Mi * Tr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// lastFrame - Compute the last reference frame along a curve.
|
||
|
//
|
||
|
// This function returns the transformation matrix to the last reference
|
||
|
// frame defined by the previously computed transformation matrix and the
|
||
|
// last point along the curve.
|
||
|
//
|
||
|
|
||
|
template<class T> Matrix44<T> lastFrame
|
||
|
(
|
||
|
const Matrix44<T>& Mi, // Previous matrix
|
||
|
const Vec3<T>& pi, // Previous point
|
||
|
const Vec3<T>& pj ) // Last point
|
||
|
{
|
||
|
Matrix44<T> Tr; Tr.translate( pj - pi );
|
||
|
|
||
|
return Mi * Tr;
|
||
|
}
|
||
|
|
||
|
} // namespace Imath
|
||
|
|
||
|
#endif
|