opencv/modules/ocl/src/kernels/haarobjectdetect_scaled2.cl

335 lines
15 KiB
Common Lisp
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Wu Xinglong, wxl370@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// Enter your kernel in this window
#pragma OPENCL EXTENSION cl_amd_printf:enable
#define CV_HAAR_FEATURE_MAX 3
typedef int sumtype;
typedef float sqsumtype;
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
{
struct __attribute__((aligned (32)))
{
int p0 __attribute__((aligned (4)));
int p1 __attribute__((aligned (4)));
int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4)));
float weight __attribute__((aligned (4)));
}
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
}
GpuHidHaarFeature;
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
{
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
float threshold /*__attribute__((aligned (4)))*/;
float alpha[2] __attribute__((aligned (8)));
int left __attribute__((aligned (4)));
int right __attribute__((aligned (4)));
}
GpuHidHaarTreeNode;
typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
{
int count __attribute__((aligned (4)));
GpuHidHaarTreeNode* node __attribute__((aligned (8)));
float* alpha __attribute__((aligned (8)));
}
GpuHidHaarClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
{
int count __attribute__((aligned (4)));
float threshold __attribute__((aligned (4)));
int two_rects __attribute__((aligned (4)));
int reserved0 __attribute__((aligned (8)));
int reserved1 __attribute__((aligned (8)));
int reserved2 __attribute__((aligned (8)));
int reserved3 __attribute__((aligned (8)));
}
GpuHidHaarStageClassifier;
typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
{
int count __attribute__((aligned (4)));
int is_stump_based __attribute__((aligned (4)));
int has_tilted_features __attribute__((aligned (4)));
int is_tree __attribute__((aligned (4)));
int pq0 __attribute__((aligned (4)));
int pq1 __attribute__((aligned (4)));
int pq2 __attribute__((aligned (4)));
int pq3 __attribute__((aligned (4)));
int p0 __attribute__((aligned (4)));
int p1 __attribute__((aligned (4)));
int p2 __attribute__((aligned (4)));
int p3 __attribute__((aligned (4)));
float inv_window_area __attribute__((aligned (4)));
}GpuHidHaarClassifierCascade;
__kernel void gpuRunHaarClassifierCascade_scaled2(
global GpuHidHaarStageClassifier * stagecascadeptr,
global int4 * info,
global GpuHidHaarTreeNode * nodeptr,
global const int * restrict sum,
global const float * restrict sqsum,
global int4 * candidate,
const int step,
const int loopcount,
const int start_stage,
const int split_stage,
const int end_stage,
const int startnode,
const int splitnode,
global int4 * p,
//const int4 * pq,
global float * correction,
const int nodecount)
{
int grpszx = get_local_size(0);
int grpszy = get_local_size(1);
int grpnumx = get_num_groups(0);
int grpidx=get_group_id(0);
int lclidx = get_local_id(0);
int lclidy = get_local_id(1);
int lcl_sz = mul24(grpszx,grpszy);
int lcl_id = mad24(lclidy,grpszx,lclidx);
__local int lclshare[1024];
__local int* glboutindex=lclshare+0;
__local int* lclcount=glboutindex+1;
__local int* lcloutindex=lclcount+1;
__local float* partialsum=(__local float*)(lcloutindex+(lcl_sz<<1));
glboutindex[0]=0;
int outputoff = mul24(grpidx,256);
candidate[outputoff+(lcl_id<<2)] = (int4)0;
candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
for(int scalei = 0; scalei <loopcount; scalei++)
{
int4 scaleinfo1;
scaleinfo1 = info[scalei];
int width = (scaleinfo1.x & 0xffff0000) >> 16;
int height = scaleinfo1.x & 0xffff;
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
int totalgrp = scaleinfo1.y & 0xffff;
float factor = as_float(scaleinfo1.w);
float correction_t=correction[scalei];
int ystep=(int)(max(2.0f,factor)+0.5f);
for(int grploop=get_group_id(0);grploop<totalgrp;grploop+=grpnumx){
int4 cascadeinfo=p[scalei];
int grpidy = grploop / grpnumperline;
int grpidx = grploop - mul24(grpidy, grpnumperline);
int ix = mad24(grpidx,grpszx,lclidx);
int iy = mad24(grpidy,grpszy,lclidy);
int x=ix*ystep;
int y=iy*ystep;
lcloutindex[lcl_id]=0;
lclcount[0]=0;
int result=1,nodecounter;
float mean,variance_norm_factor;
//if((ix < width) && (iy < height))
{
const int p_offset = mad24(y, step, x);
cascadeinfo.x +=p_offset;
cascadeinfo.z +=p_offset;
mean = (sum[mad24(cascadeinfo.y,step,cascadeinfo.x)] - sum[mad24(cascadeinfo.y,step,cascadeinfo.z)] -
sum[mad24(cascadeinfo.w,step,cascadeinfo.x)] + sum[mad24(cascadeinfo.w,step,cascadeinfo.z)])
*correction_t;
variance_norm_factor =sqsum[mad24(cascadeinfo.y,step, cascadeinfo.x)] - sqsum[mad24(cascadeinfo.y, step, cascadeinfo.z)] -
sqsum[mad24(cascadeinfo.w, step, cascadeinfo.x)] + sqsum[mad24(cascadeinfo.w, step, cascadeinfo.z)];
variance_norm_factor = variance_norm_factor * correction_t - mean * mean;
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
result = 1;
nodecounter = startnode+nodecount*scalei;
for(int stageloop = start_stage; stageloop < split_stage&&result; stageloop++ )
{
float stage_sum = 0.f;
int4 stageinfo = *(global int4*)(stagecascadeptr+stageloop);
float stagethreshold = as_float(stageinfo.y);
for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ )
{
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x +=p_offset;
info1.z +=p_offset;
info2.x +=p_offset;
info2.z +=p_offset;
float classsum = (sum[mad24(info1.y,step,info1.x)] - sum[mad24(info1.y,step,info1.z)] -
sum[mad24(info1.w,step,info1.x)] + sum[mad24(info1.w,step,info1.z)]) * w.x;
classsum += (sum[mad24(info2.y,step,info2.x)] - sum[mad24(info2.y,step,info2.z)] -
sum[mad24(info2.w,step,info2.x)] + sum[mad24(info2.w,step,info2.z)]) * w.y;
info3.x +=p_offset;
info3.z +=p_offset;
classsum += (sum[mad24(info3.y,step,info3.x)] - sum[mad24(info3.y,step,info3.z)] -
sum[mad24(info3.w,step,info3.x)] + sum[mad24(info3.w,step,info3.z)]) * w.z;
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
nodecounter++;
}
result=(stage_sum>=stagethreshold);
}
if(result&&(ix<width)&&(iy<height))
{
int queueindex=atomic_inc(lclcount);
lcloutindex[queueindex<<1]=(y<<16)|x;
lcloutindex[(queueindex<<1)+1]=as_int(variance_norm_factor);
}
barrier(CLK_LOCAL_MEM_FENCE);
int queuecount=lclcount[0];
nodecounter=splitnode+nodecount*scalei;
for(int stageloop=split_stage;stageloop<end_stage&&queuecount>0;stageloop++)
{
lclcount[0]=0;
barrier(CLK_LOCAL_MEM_FENCE);
int2 stageinfo=*(global int2*)(stagecascadeptr+stageloop);
float stagethreshold=as_float(stageinfo.y);
int perfscale=queuecount>4?3:2;
int queuecount_loop=(queuecount+(1<<perfscale)-1)>>perfscale;
int lcl_compute_win=lcl_sz>>perfscale;
int lcl_compute_win_id=(lcl_id>>(6-perfscale));
int lcl_loops=(stageinfo.x+lcl_compute_win-1)>>(6-perfscale);
int lcl_compute_id=lcl_id-(lcl_compute_win_id<<(6-perfscale));
for(int queueloop=0;queueloop<queuecount_loop&&lcl_compute_win_id<queuecount;queueloop++)
{
float stage_sum=0.f;
int temp_coord=lcloutindex[lcl_compute_win_id<<1];
float variance_norm_factor=as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
int queue_offset=mad24(((temp_coord&(int)0xffff0000)>>16),step,temp_coord&0xffff);
int tempnodecounter=lcl_compute_id;
float part_sum=0.f;
for(int lcl_loop=0;lcl_loop<lcl_loops&&tempnodecounter<stageinfo.x;lcl_loop++)
{
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x +=queue_offset;
info1.z +=queue_offset;
info2.x +=queue_offset;
info2.z +=queue_offset;
float classsum = (sum[mad24(info1.y,step,info1.x)] - sum[mad24(info1.y,step,info1.z)] -
sum[mad24(info1.w,step,info1.x)] + sum[mad24(info1.w,step,info1.z)]) * w.x;
classsum += (sum[mad24(info2.y,step,info2.x)] - sum[mad24(info2.y,step,info2.z)] -
sum[mad24(info2.w,step,info2.x)] + sum[mad24(info2.w,step,info2.z)]) * w.y;
info3.x +=queue_offset;
info3.z +=queue_offset;
classsum += (sum[mad24(info3.y,step,info3.x)] - sum[mad24(info3.y,step,info3.z)] -
sum[mad24(info3.w,step,info3.x)] + sum[mad24(info3.w,step,info3.z)]) * w.z;
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
tempnodecounter+=lcl_compute_win;
}
partialsum[lcl_id]=part_sum;
barrier(CLK_LOCAL_MEM_FENCE);
for(int i=0;i<lcl_compute_win&&(lcl_compute_id==0);i++)
{
stage_sum+=partialsum[lcl_id+i];
}
if(stage_sum>=stagethreshold&&(lcl_compute_id==0))
{
int queueindex=atomic_inc(lclcount);
lcloutindex[queueindex<<1]=temp_coord;
lcloutindex[(queueindex<<1)+1]=as_int(variance_norm_factor);
}
lcl_compute_win_id+=(1<<perfscale);
barrier(CLK_LOCAL_MEM_FENCE);
}
queuecount=lclcount[0];
nodecounter+=stageinfo.x;
}
if(lcl_id<queuecount)
{
int temp=lcloutindex[lcl_id<<1];
int x=temp&0xffff;
int y=(temp&(int)0xffff0000)>>16;
temp=glboutindex[0];
int4 candidate_result;
candidate_result.zw=(int2)convert_int_rtn(factor*20.f);
candidate_result.x=x;
candidate_result.y=y;
atomic_inc(glboutindex);
candidate[outputoff+temp+lcl_id]=candidate_result;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
}
}
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode * orinode, global GpuHidHaarTreeNode * newnode,float scale,float weight_scale,int nodenum)
{
int counter=get_global_id(0);
int tr_x[3],tr_y[3],tr_h[3],tr_w[3],i=0;
GpuHidHaarTreeNode t1 = *(orinode + counter);
#pragma unroll
for(i=0;i<3;i++){
tr_x[i]=(int)(t1.p[i][0]*scale+0.5f);
tr_y[i]=(int)(t1.p[i][1]*scale+0.5f);
tr_w[i]=(int)(t1.p[i][2]*scale+0.5f);
tr_h[i]=(int)(t1.p[i][3]*scale+0.5f);
}
t1.weight[0]=t1.p[2][0]?-(t1.weight[1]*tr_h[1]*tr_w[1]+t1.weight[2]*tr_h[2]*tr_w[2])/(tr_h[0]*tr_w[0]):-t1.weight[1]*tr_h[1]*tr_w[1]/(tr_h[0]*tr_w[0]);
counter+=nodenum;
#pragma unroll
for(i=0;i<3;i++)
{
newnode[counter].p[i][0]=tr_x[i];
newnode[counter].p[i][1]=tr_y[i];
newnode[counter].p[i][2]=tr_x[i]+tr_w[i];
newnode[counter].p[i][3]=tr_y[i]+tr_h[i];
newnode[counter].weight[i]=t1.weight[i]*weight_scale;
}
newnode[counter].left=t1.left;
newnode[counter].right=t1.right;
newnode[counter].threshold=t1.threshold;
newnode[counter].alpha[0]=t1.alpha[0];
newnode[counter].alpha[1]=t1.alpha[1];
}