mirror of
https://github.com/opencv/opencv.git
synced 2025-01-09 04:57:03 +08:00
335 lines
15 KiB
Common Lisp
335 lines
15 KiB
Common Lisp
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// @Authors
|
||
|
// Wu Xinglong, wxl370@126.com
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other oclMaterials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors as is and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
// Enter your kernel in this window
|
||
|
#pragma OPENCL EXTENSION cl_amd_printf:enable
|
||
|
#define CV_HAAR_FEATURE_MAX 3
|
||
|
typedef int sumtype;
|
||
|
typedef float sqsumtype;
|
||
|
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
|
||
|
{
|
||
|
struct __attribute__((aligned (32)))
|
||
|
{
|
||
|
int p0 __attribute__((aligned (4)));
|
||
|
int p1 __attribute__((aligned (4)));
|
||
|
int p2 __attribute__((aligned (4)));
|
||
|
int p3 __attribute__((aligned (4)));
|
||
|
float weight __attribute__((aligned (4)));
|
||
|
}
|
||
|
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
||
|
}
|
||
|
GpuHidHaarFeature;
|
||
|
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
|
||
|
{
|
||
|
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
|
||
|
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
|
||
|
float threshold /*__attribute__((aligned (4)))*/;
|
||
|
float alpha[2] __attribute__((aligned (8)));
|
||
|
int left __attribute__((aligned (4)));
|
||
|
int right __attribute__((aligned (4)));
|
||
|
}
|
||
|
GpuHidHaarTreeNode;
|
||
|
typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
||
|
{
|
||
|
int count __attribute__((aligned (4)));
|
||
|
GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
||
|
float* alpha __attribute__((aligned (8)));
|
||
|
}
|
||
|
GpuHidHaarClassifier;
|
||
|
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
||
|
{
|
||
|
int count __attribute__((aligned (4)));
|
||
|
float threshold __attribute__((aligned (4)));
|
||
|
int two_rects __attribute__((aligned (4)));
|
||
|
int reserved0 __attribute__((aligned (8)));
|
||
|
int reserved1 __attribute__((aligned (8)));
|
||
|
int reserved2 __attribute__((aligned (8)));
|
||
|
int reserved3 __attribute__((aligned (8)));
|
||
|
}
|
||
|
GpuHidHaarStageClassifier;
|
||
|
typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||
|
{
|
||
|
int count __attribute__((aligned (4)));
|
||
|
int is_stump_based __attribute__((aligned (4)));
|
||
|
int has_tilted_features __attribute__((aligned (4)));
|
||
|
int is_tree __attribute__((aligned (4)));
|
||
|
int pq0 __attribute__((aligned (4)));
|
||
|
int pq1 __attribute__((aligned (4)));
|
||
|
int pq2 __attribute__((aligned (4)));
|
||
|
int pq3 __attribute__((aligned (4)));
|
||
|
int p0 __attribute__((aligned (4)));
|
||
|
int p1 __attribute__((aligned (4)));
|
||
|
int p2 __attribute__((aligned (4)));
|
||
|
int p3 __attribute__((aligned (4)));
|
||
|
float inv_window_area __attribute__((aligned (4)));
|
||
|
}GpuHidHaarClassifierCascade;
|
||
|
|
||
|
__kernel void gpuRunHaarClassifierCascade_scaled2(
|
||
|
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||
|
global int4 * info,
|
||
|
global GpuHidHaarTreeNode * nodeptr,
|
||
|
global const int * restrict sum,
|
||
|
global const float * restrict sqsum,
|
||
|
global int4 * candidate,
|
||
|
const int step,
|
||
|
const int loopcount,
|
||
|
const int start_stage,
|
||
|
const int split_stage,
|
||
|
const int end_stage,
|
||
|
const int startnode,
|
||
|
const int splitnode,
|
||
|
global int4 * p,
|
||
|
//const int4 * pq,
|
||
|
global float * correction,
|
||
|
const int nodecount)
|
||
|
{
|
||
|
int grpszx = get_local_size(0);
|
||
|
int grpszy = get_local_size(1);
|
||
|
int grpnumx = get_num_groups(0);
|
||
|
int grpidx=get_group_id(0);
|
||
|
int lclidx = get_local_id(0);
|
||
|
int lclidy = get_local_id(1);
|
||
|
int lcl_sz = mul24(grpszx,grpszy);
|
||
|
int lcl_id = mad24(lclidy,grpszx,lclidx);
|
||
|
__local int lclshare[1024];
|
||
|
__local int* glboutindex=lclshare+0;
|
||
|
__local int* lclcount=glboutindex+1;
|
||
|
__local int* lcloutindex=lclcount+1;
|
||
|
__local float* partialsum=(__local float*)(lcloutindex+(lcl_sz<<1));
|
||
|
glboutindex[0]=0;
|
||
|
int outputoff = mul24(grpidx,256);
|
||
|
candidate[outputoff+(lcl_id<<2)] = (int4)0;
|
||
|
candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
|
||
|
candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
|
||
|
candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
|
||
|
for(int scalei = 0; scalei <loopcount; scalei++)
|
||
|
{
|
||
|
int4 scaleinfo1;
|
||
|
scaleinfo1 = info[scalei];
|
||
|
int width = (scaleinfo1.x & 0xffff0000) >> 16;
|
||
|
int height = scaleinfo1.x & 0xffff;
|
||
|
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
|
||
|
int totalgrp = scaleinfo1.y & 0xffff;
|
||
|
float factor = as_float(scaleinfo1.w);
|
||
|
float correction_t=correction[scalei];
|
||
|
int ystep=(int)(max(2.0f,factor)+0.5f);
|
||
|
for(int grploop=get_group_id(0);grploop<totalgrp;grploop+=grpnumx){
|
||
|
int4 cascadeinfo=p[scalei];
|
||
|
int grpidy = grploop / grpnumperline;
|
||
|
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
||
|
int ix = mad24(grpidx,grpszx,lclidx);
|
||
|
int iy = mad24(grpidy,grpszy,lclidy);
|
||
|
int x=ix*ystep;
|
||
|
int y=iy*ystep;
|
||
|
lcloutindex[lcl_id]=0;
|
||
|
lclcount[0]=0;
|
||
|
int result=1,nodecounter;
|
||
|
float mean,variance_norm_factor;
|
||
|
//if((ix < width) && (iy < height))
|
||
|
{
|
||
|
const int p_offset = mad24(y, step, x);
|
||
|
cascadeinfo.x +=p_offset;
|
||
|
cascadeinfo.z +=p_offset;
|
||
|
mean = (sum[mad24(cascadeinfo.y,step,cascadeinfo.x)] - sum[mad24(cascadeinfo.y,step,cascadeinfo.z)] -
|
||
|
sum[mad24(cascadeinfo.w,step,cascadeinfo.x)] + sum[mad24(cascadeinfo.w,step,cascadeinfo.z)])
|
||
|
*correction_t;
|
||
|
variance_norm_factor =sqsum[mad24(cascadeinfo.y,step, cascadeinfo.x)] - sqsum[mad24(cascadeinfo.y, step, cascadeinfo.z)] -
|
||
|
sqsum[mad24(cascadeinfo.w, step, cascadeinfo.x)] + sqsum[mad24(cascadeinfo.w, step, cascadeinfo.z)];
|
||
|
variance_norm_factor = variance_norm_factor * correction_t - mean * mean;
|
||
|
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
||
|
result = 1;
|
||
|
nodecounter = startnode+nodecount*scalei;
|
||
|
for(int stageloop = start_stage; stageloop < split_stage&&result; stageloop++ )
|
||
|
{
|
||
|
float stage_sum = 0.f;
|
||
|
int4 stageinfo = *(global int4*)(stagecascadeptr+stageloop);
|
||
|
float stagethreshold = as_float(stageinfo.y);
|
||
|
for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ )
|
||
|
{
|
||
|
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
|
||
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||
|
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||
|
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||
|
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||
|
float nodethreshold = w.w * variance_norm_factor;
|
||
|
info1.x +=p_offset;
|
||
|
info1.z +=p_offset;
|
||
|
info2.x +=p_offset;
|
||
|
info2.z +=p_offset;
|
||
|
float classsum = (sum[mad24(info1.y,step,info1.x)] - sum[mad24(info1.y,step,info1.z)] -
|
||
|
sum[mad24(info1.w,step,info1.x)] + sum[mad24(info1.w,step,info1.z)]) * w.x;
|
||
|
classsum += (sum[mad24(info2.y,step,info2.x)] - sum[mad24(info2.y,step,info2.z)] -
|
||
|
sum[mad24(info2.w,step,info2.x)] + sum[mad24(info2.w,step,info2.z)]) * w.y;
|
||
|
info3.x +=p_offset;
|
||
|
info3.z +=p_offset;
|
||
|
classsum += (sum[mad24(info3.y,step,info3.x)] - sum[mad24(info3.y,step,info3.z)] -
|
||
|
sum[mad24(info3.w,step,info3.x)] + sum[mad24(info3.w,step,info3.z)]) * w.z;
|
||
|
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||
|
nodecounter++;
|
||
|
}
|
||
|
result=(stage_sum>=stagethreshold);
|
||
|
}
|
||
|
if(result&&(ix<width)&&(iy<height))
|
||
|
{
|
||
|
int queueindex=atomic_inc(lclcount);
|
||
|
lcloutindex[queueindex<<1]=(y<<16)|x;
|
||
|
lcloutindex[(queueindex<<1)+1]=as_int(variance_norm_factor);
|
||
|
}
|
||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
int queuecount=lclcount[0];
|
||
|
nodecounter=splitnode+nodecount*scalei;
|
||
|
for(int stageloop=split_stage;stageloop<end_stage&&queuecount>0;stageloop++)
|
||
|
{
|
||
|
lclcount[0]=0;
|
||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
int2 stageinfo=*(global int2*)(stagecascadeptr+stageloop);
|
||
|
float stagethreshold=as_float(stageinfo.y);
|
||
|
int perfscale=queuecount>4?3:2;
|
||
|
int queuecount_loop=(queuecount+(1<<perfscale)-1)>>perfscale;
|
||
|
int lcl_compute_win=lcl_sz>>perfscale;
|
||
|
int lcl_compute_win_id=(lcl_id>>(6-perfscale));
|
||
|
int lcl_loops=(stageinfo.x+lcl_compute_win-1)>>(6-perfscale);
|
||
|
int lcl_compute_id=lcl_id-(lcl_compute_win_id<<(6-perfscale));
|
||
|
for(int queueloop=0;queueloop<queuecount_loop&&lcl_compute_win_id<queuecount;queueloop++)
|
||
|
{
|
||
|
float stage_sum=0.f;
|
||
|
int temp_coord=lcloutindex[lcl_compute_win_id<<1];
|
||
|
float variance_norm_factor=as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
|
||
|
int queue_offset=mad24(((temp_coord&(int)0xffff0000)>>16),step,temp_coord&0xffff);
|
||
|
int tempnodecounter=lcl_compute_id;
|
||
|
float part_sum=0.f;
|
||
|
for(int lcl_loop=0;lcl_loop<lcl_loops&&tempnodecounter<stageinfo.x;lcl_loop++)
|
||
|
{
|
||
|
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
||
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||
|
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||
|
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||
|
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||
|
float nodethreshold = w.w * variance_norm_factor;
|
||
|
info1.x +=queue_offset;
|
||
|
info1.z +=queue_offset;
|
||
|
info2.x +=queue_offset;
|
||
|
info2.z +=queue_offset;
|
||
|
float classsum = (sum[mad24(info1.y,step,info1.x)] - sum[mad24(info1.y,step,info1.z)] -
|
||
|
sum[mad24(info1.w,step,info1.x)] + sum[mad24(info1.w,step,info1.z)]) * w.x;
|
||
|
classsum += (sum[mad24(info2.y,step,info2.x)] - sum[mad24(info2.y,step,info2.z)] -
|
||
|
sum[mad24(info2.w,step,info2.x)] + sum[mad24(info2.w,step,info2.z)]) * w.y;
|
||
|
|
||
|
info3.x +=queue_offset;
|
||
|
info3.z +=queue_offset;
|
||
|
classsum += (sum[mad24(info3.y,step,info3.x)] - sum[mad24(info3.y,step,info3.z)] -
|
||
|
sum[mad24(info3.w,step,info3.x)] + sum[mad24(info3.w,step,info3.z)]) * w.z;
|
||
|
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||
|
tempnodecounter+=lcl_compute_win;
|
||
|
}
|
||
|
partialsum[lcl_id]=part_sum;
|
||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
for(int i=0;i<lcl_compute_win&&(lcl_compute_id==0);i++)
|
||
|
{
|
||
|
stage_sum+=partialsum[lcl_id+i];
|
||
|
}
|
||
|
if(stage_sum>=stagethreshold&&(lcl_compute_id==0))
|
||
|
{
|
||
|
int queueindex=atomic_inc(lclcount);
|
||
|
lcloutindex[queueindex<<1]=temp_coord;
|
||
|
lcloutindex[(queueindex<<1)+1]=as_int(variance_norm_factor);
|
||
|
}
|
||
|
lcl_compute_win_id+=(1<<perfscale);
|
||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
}
|
||
|
queuecount=lclcount[0];
|
||
|
nodecounter+=stageinfo.x;
|
||
|
}
|
||
|
if(lcl_id<queuecount)
|
||
|
{
|
||
|
int temp=lcloutindex[lcl_id<<1];
|
||
|
int x=temp&0xffff;
|
||
|
int y=(temp&(int)0xffff0000)>>16;
|
||
|
temp=glboutindex[0];
|
||
|
int4 candidate_result;
|
||
|
candidate_result.zw=(int2)convert_int_rtn(factor*20.f);
|
||
|
candidate_result.x=x;
|
||
|
candidate_result.y=y;
|
||
|
atomic_inc(glboutindex);
|
||
|
candidate[outputoff+temp+lcl_id]=candidate_result;
|
||
|
}
|
||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode * orinode, global GpuHidHaarTreeNode * newnode,float scale,float weight_scale,int nodenum)
|
||
|
{
|
||
|
int counter=get_global_id(0);
|
||
|
int tr_x[3],tr_y[3],tr_h[3],tr_w[3],i=0;
|
||
|
GpuHidHaarTreeNode t1 = *(orinode + counter);
|
||
|
#pragma unroll
|
||
|
for(i=0;i<3;i++){
|
||
|
tr_x[i]=(int)(t1.p[i][0]*scale+0.5f);
|
||
|
tr_y[i]=(int)(t1.p[i][1]*scale+0.5f);
|
||
|
tr_w[i]=(int)(t1.p[i][2]*scale+0.5f);
|
||
|
tr_h[i]=(int)(t1.p[i][3]*scale+0.5f);
|
||
|
}
|
||
|
t1.weight[0]=t1.p[2][0]?-(t1.weight[1]*tr_h[1]*tr_w[1]+t1.weight[2]*tr_h[2]*tr_w[2])/(tr_h[0]*tr_w[0]):-t1.weight[1]*tr_h[1]*tr_w[1]/(tr_h[0]*tr_w[0]);
|
||
|
counter+=nodenum;
|
||
|
#pragma unroll
|
||
|
for(i=0;i<3;i++)
|
||
|
{
|
||
|
newnode[counter].p[i][0]=tr_x[i];
|
||
|
newnode[counter].p[i][1]=tr_y[i];
|
||
|
newnode[counter].p[i][2]=tr_x[i]+tr_w[i];
|
||
|
newnode[counter].p[i][3]=tr_y[i]+tr_h[i];
|
||
|
newnode[counter].weight[i]=t1.weight[i]*weight_scale;
|
||
|
}
|
||
|
newnode[counter].left=t1.left;
|
||
|
newnode[counter].right=t1.right;
|
||
|
newnode[counter].threshold=t1.threshold;
|
||
|
newnode[counter].alpha[0]=t1.alpha[0];
|
||
|
newnode[counter].alpha[1]=t1.alpha[1];
|
||
|
}
|
||
|
|