opencv/samples/cpp/sample_logistic_regression.cpp

98 lines
2.7 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////////
// sample_logistic_regression.cpp
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
// This is a sample program demostrating classification of digits 0 and 1 using Logistic Regression
// AUTHOR:
// Rahul Kavi rahulkavi[at]live[at]com
//
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat data_temp, labels_temp;
Mat data, labels;
Mat responses, result;
FileStorage f;
cout<<"*****************************************************************************************"<<endl;
cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl;
cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl;
cout<<"*****************************************************************************************\n\n"<<endl;
cout<<"loading the dataset\n"<<endl;
f.open("data01.xml", FileStorage::READ);
f["datamat"] >> data_temp;
f["labelsmat"] >> labels_temp;
data_temp.convertTo(data, CV_32F);
labels_temp.convertTo(labels, CV_32F);
cout<<"initializing Logisitc Regression Parameters\n"<<endl;
CvLR_TrainParams params = CvLR_TrainParams();
params.alpha = 0.001;
params.num_iters = 10;
params.norm = CvLR::REG_L2;
params.regularized = 1;
params.train_method = CvLR::BATCH;
cout<<"training Logisitc Regression classifier\n"<<endl;
CvLR lr_(data, labels, params);
cout<<"predicting the trained dataset\n"<<endl;
lr_.predict(data, responses);
labels.convertTo(labels, CV_32S);
cout<<"Original Label :: Predicted Label"<<endl;
result = (labels == responses)/255;
for(int i=0;i<labels.rows;i++)
{
cout<<labels.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
}
// calculate accuracy
cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
// save the classfier
lr_.save("NewLR_Trained.xml");
// load the classifier onto new object
CvLR lr2;
cout<<"loading a new classifier"<<endl;
lr2.load("NewLR_Trained.xml");
Mat responses2;
// predict using loaded classifier
cout<<"predicting the dataset using the loaded classfier\n"<<endl;
lr2.predict(data, responses2);
// calculate accuracy
result = (labels == responses2)/255;
cout<<"accuracy using loaded classifier: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
return 0;
}