mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 04:00:30 +08:00
98 lines
2.7 KiB
C++
98 lines
2.7 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////////////
|
||
|
// sample_logistic_regression.cpp
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
|
||
|
// This is a sample program demostrating classification of digits 0 and 1 using Logistic Regression
|
||
|
|
||
|
// AUTHOR:
|
||
|
// Rahul Kavi rahulkavi[at]live[at]com
|
||
|
//
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
#include <opencv2/core/core.hpp>
|
||
|
#include <opencv2/ml/ml.hpp>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
Mat data_temp, labels_temp;
|
||
|
Mat data, labels;
|
||
|
Mat responses, result;
|
||
|
|
||
|
FileStorage f;
|
||
|
|
||
|
cout<<"*****************************************************************************************"<<endl;
|
||
|
cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl;
|
||
|
cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl;
|
||
|
cout<<"*****************************************************************************************\n\n"<<endl;
|
||
|
|
||
|
cout<<"loading the dataset\n"<<endl;
|
||
|
|
||
|
f.open("data01.xml", FileStorage::READ);
|
||
|
|
||
|
f["datamat"] >> data_temp;
|
||
|
f["labelsmat"] >> labels_temp;
|
||
|
|
||
|
data_temp.convertTo(data, CV_32F);
|
||
|
labels_temp.convertTo(labels, CV_32F);
|
||
|
|
||
|
cout<<"initializing Logisitc Regression Parameters\n"<<endl;
|
||
|
|
||
|
CvLR_TrainParams params = CvLR_TrainParams();
|
||
|
|
||
|
params.alpha = 0.001;
|
||
|
params.num_iters = 10;
|
||
|
params.norm = CvLR::REG_L2;
|
||
|
params.regularized = 1;
|
||
|
params.train_method = CvLR::BATCH;
|
||
|
|
||
|
cout<<"training Logisitc Regression classifier\n"<<endl;
|
||
|
|
||
|
CvLR lr_(data, labels, params);
|
||
|
|
||
|
cout<<"predicting the trained dataset\n"<<endl;
|
||
|
|
||
|
lr_.predict(data, responses);
|
||
|
|
||
|
labels.convertTo(labels, CV_32S);
|
||
|
|
||
|
cout<<"Original Label :: Predicted Label"<<endl;
|
||
|
result = (labels == responses)/255;
|
||
|
for(int i=0;i<labels.rows;i++)
|
||
|
{
|
||
|
cout<<labels.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
|
||
|
}
|
||
|
// calculate accuracy
|
||
|
cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
|
||
|
|
||
|
// save the classfier
|
||
|
lr_.save("NewLR_Trained.xml");
|
||
|
|
||
|
// load the classifier onto new object
|
||
|
CvLR lr2;
|
||
|
cout<<"loading a new classifier"<<endl;
|
||
|
|
||
|
lr2.load("NewLR_Trained.xml");
|
||
|
|
||
|
Mat responses2;
|
||
|
|
||
|
// predict using loaded classifier
|
||
|
cout<<"predicting the dataset using the loaded classfier\n"<<endl;
|
||
|
|
||
|
lr2.predict(data, responses2);
|
||
|
|
||
|
// calculate accuracy
|
||
|
result = (labels == responses2)/255;
|
||
|
cout<<"accuracy using loaded classifier: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
|
||
|
|
||
|
return 0;
|
||
|
}
|