opencv/modules/video/src/bgfg_gaussmix2.cpp

635 lines
24 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*//Implementation of the Gaussian mixture model background subtraction from:
//
//"Improved adaptive Gausian mixture model for background subtraction"
//Z.Zivkovic
//International Conference Pattern Recognition, UK, August, 2004
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
//The code is very fast and performs also shadow detection.
//Number of Gausssian components is adapted per pixel.
//
// and
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
//
//
//Example usage with as cpp class
// BackgroundSubtractorMOG2 bg_model;
//For each new image the model is updates using:
// bg_model(img, fgmask);
//
//Example usage as part of the CvBGStatModel:
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
//
// //update for each frame
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
//
// //release at the program termination
// cvReleaseBGStatModel( &bg_model );
//
//Author: Z.Zivkovic, www.zoranz.net
//Date: 7-April-2011, Version:1.0
///////////*/
2010-12-29 05:15:58 +08:00
#include "precomp.hpp"
namespace cv
{
/*
Interface of Gaussian mixture algorithm from:
"Improved adaptive Gausian mixture model for background subtraction"
Z.Zivkovic
International Conference Pattern Recognition, UK, August, 2004
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
Advantages:
-fast - number of Gausssian components is constantly adapted per pixel.
-performs also shadow detection (see bgfg_segm_test.cpp example)
*/
// default parameters of gaussian background detection algorithm
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
static const float defaultVarThreshold2 = 4.0f*4.0f;
static const int defaultNMixtures2 = 5; // maximal number of Gaussians in mixture
static const float defaultBackgroundRatio2 = 0.9f; // threshold sum of weights for background test
static const float defaultVarThresholdGen2 = 3.0f*3.0f;
static const float defaultVarInit2 = 15.0f; // initial variance for new components
static const float defaultVarMax2 = 5*defaultVarInit2;
static const float defaultVarMin2 = 4.0f;
// additional parameters
static const float defaultfCT2 = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
struct GaussBGStatModel2Params
{
//image info
int nWidth;
int nHeight;
int nND;//number of data dimensions (image channels)
bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
2010-12-29 05:15:58 +08:00
double minArea; // for postfiltering
bool bInit;//default 1, faster updates at start
2010-12-29 05:15:58 +08:00
/////////////////////////
//very important parameters - things you will change
////////////////////////
float fAlphaT;
//alpha - speed of update - if the time interval you want to average over is T
//set alpha=1/T. It is also usefull at start to make T slowly increase
//from 1 until the desired T
float fTb;
//Tb - threshold on the squared Mahalan. dist. to decide if it is well described
//by the background model or not. Related to Cthr from the paper.
//This does not influence the update of the background. A typical value could be 4 sigma
//and that is Tb=4*4=16;
/////////////////////////
//less important parameters - things you might change but be carefull
////////////////////////
float fTg;
//Tg - threshold on the squared Mahalan. dist. to decide
//when a sample is close to the existing components. If it is not close
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
//Smaller Tg leads to more generated components and higher Tg might make
//lead to small number of components but they can grow too large
float fTB;//1-cf from the paper
//TB - threshold when the component becomes significant enough to be included into
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
//it is considered foreground
float fVarInit;
float fVarMax;
float fVarMin;
//initial standard deviation for the newly generated components.
//It will will influence the speed of adaptation. A good guess should be made.
//A simple way is to estimate the typical standard deviation from the images.
//I used here 10 as a reasonable value
float fCT;//CT - complexity reduction prior
//this is related to the number of samples needed to accept that a component
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
2010-12-29 05:15:58 +08:00
//even less important parameters
int nM;//max number of modes - const - 4 is usually enough
2010-12-29 05:15:58 +08:00
//shadow detection parameters
bool bShadowDetection;//default 1 - do shadow detection
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
float fTau;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
};
struct GMM
2010-12-29 05:15:58 +08:00
{
float weight;
float variance;
};
// shadow detection performed per pixel
// should work for rgb data, could be usefull for gray scale and depth data as well
// See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
static CV_INLINE bool
detectShadowGMM(const float* data, int nchannels, int nmodes,
const GMM* gmm, const float* mean,
float Tb, float TB, float tau)
{
float tWeight = 0;
// check all the components marked as background:
for( int mode = 0; mode < nmodes; mode++, mean += nchannels )
{
GMM g = gmm[mode];
float numerator = 0.0f;
float denominator = 0.0f;
for( int c = 0; c < nchannels; c++ )
{
numerator += data[c] * mean[c];
denominator += mean[c] * mean[c];
}
// no division by zero allowed
if( denominator == 0 )
return false;
// if tau < a < 1 then also check the color distortion
if( numerator <= denominator && numerator >= tau*denominator )
{
float a = numerator / denominator;
float dist2a = 0.0f;
for( int c = 0; c < nchannels; c++ )
{
float dD= a*mean[c] - data[c];
dist2a += dD*dD;
}
if (dist2a < Tb*g.variance*a*a)
return true;
};
tWeight += g.weight;
if( tWeight > TB )
return false;
};
return false;
}
//update GMM - the base update function performed per pixel
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
struct MOG2Invoker
{
MOG2Invoker(const Mat& _src, Mat& _dst,
GMM* _gmm, float* _mean,
uchar* _modesUsed,
int _nmixtures, float _alphaT,
float _Tb, float _TB, float _Tg,
float _varInit, float _varMin, float _varMax,
float _prune, float _tau, bool _detectShadows,
uchar _shadowVal)
{
src = &_src;
dst = &_dst;
gmm0 = _gmm;
mean0 = _mean;
modesUsed0 = _modesUsed;
nmixtures = _nmixtures;
alphaT = _alphaT;
Tb = _Tb;
TB = _TB;
Tg = _Tg;
varInit = _varInit;
varMin = MIN(_varMin, _varMax);
varMax = MAX(_varMin, _varMax);
prune = _prune;
tau = _tau;
detectShadows = _detectShadows;
shadowVal = _shadowVal;
cvtfunc = src->depth() != CV_32F ? getConvertFunc(src->depth(), CV_32F) : 0;
}
void operator()(const BlockedRange& range) const
{
int y0 = range.begin(), y1 = range.end();
int ncols = src->cols, nchannels = src->channels();
AutoBuffer<float> buf(src->cols*nchannels);
float alpha1 = 1.f - alphaT;
float dData[CV_CN_MAX];
for( int y = y0; y < y1; y++ )
{
const float* data = buf;
if( cvtfunc )
cvtfunc( src->ptr(y), src->step, 0, 0, (uchar*)data, 0, Size(ncols*nchannels, 1), 0);
else
data = src->ptr<float>(y);
float* mean = mean0 + ncols*nmixtures*nchannels*y;
GMM* gmm = gmm0 + ncols*nmixtures*y;
uchar* modesUsed = modesUsed0 + ncols*y;
uchar* mask = dst->ptr(y);
for( int x = 0; x < ncols; x++, data += nchannels, gmm += nmixtures, mean += nmixtures*nchannels )
{
//calculate distances to the modes (+ sort)
//here we need to go in descending order!!!
bool background = false;//return value -> true - the pixel classified as background
//internal:
bool fitsPDF = false;//if it remains zero a new GMM mode will be added
int nmodes = modesUsed[x], nNewModes = nmodes;//current number of modes in GMM
float totalWeight = 0.f;
float* mean_m = mean;
//////
//go through all modes
for( int mode = 0; mode < nmodes; mode++, mean_m += nchannels )
{
float weight = alpha1*gmm[mode].weight + prune;//need only weight if fit is found
////
//fit not found yet
if( !fitsPDF )
{
//check if it belongs to some of the remaining modes
float var = gmm[mode].variance;
//calculate difference and distance
float dist2;
if( nchannels == 3 )
{
dData[0] = mean_m[0] - data[0];
dData[1] = mean_m[1] - data[1];
dData[2] = mean_m[2] - data[2];
dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
}
else
{
dist2 = 0.f;
for( int c = 0; c < nchannels; c++ )
{
dData[c] = mean_m[c] - data[c];
dist2 += dData[c]*dData[c];
}
}
//background? - Tb - usually larger than Tg
if( totalWeight < TB && dist2 < Tb*var )
background = true;
//check fit
if( dist2 < Tg*var )
{
/////
//belongs to the mode
fitsPDF = true;
//update distribution
//update weight
weight += alphaT;
float k = alphaT/weight;
//update mean
for( int c = 0; c < nchannels; c++ )
mean_m[c] -= k*dData[c];
//update variance
float varnew = var + k*(dist2-var);
//limit the variance
varnew = MAX(varnew, varMin);
varnew = MIN(varnew, varMax);
gmm[mode].variance = varnew;
//sort
//all other weights are at the same place and
//only the matched (iModes) is higher -> just find the new place for it
for( int i = mode; i > 0; i-- )
{
//check one up
if( weight < gmm[i-1].weight )
break;
//swap one up
std::swap(gmm[i], gmm[i-1]);
for( int c = 0; c < nchannels; c++ )
std::swap(mean[i*nchannels + c], mean[(i-1)*nchannels + c]);
}
//belongs to the mode - bFitsPDF becomes 1
/////
}
}//!bFitsPDF)
//check prune
if( weight < -prune )
{
weight = 0.0;
nmodes--;
}
gmm[mode].weight = weight;//update weight by the calculated value
totalWeight += weight;
}
//go through all modes
//////
//renormalize weights
totalWeight = 1.f/totalWeight;
for( int mode = 0; mode < nmodes; mode++ )
{
gmm[mode].weight *= totalWeight;
}
nmodes = nNewModes;
//make new mode if needed and exit
if( !fitsPDF )
{
// replace the weakest or add a new one
int mode = nmodes == nmixtures ? nmixtures-1 : nmodes++;
if (nmodes==1)
gmm[mode].weight = 1.f;
else
{
gmm[mode].weight = alphaT;
// renormalize all other weights
for( int i = 0; i < nmodes-1; i++ )
gmm[i].weight *= alpha1;
}
// init
for( int c = 0; c < nchannels; c++ )
mean[mode*nchannels + c] = data[c];
gmm[mode].variance = varInit;
//sort
//find the new place for it
for( int i = nmodes - 1; i > 0; i-- )
{
// check one up
if( alphaT < gmm[i-1].weight )
break;
// swap one up
std::swap(gmm[i], gmm[i-1]);
for( int c = 0; c < nchannels; c++ )
std::swap(mean[i*nchannels + c], mean[(i-1)*nchannels + c]);
}
}
//set the number of modes
modesUsed[x] = nmodes;
mask[x] = background ? 0 :
detectShadows && detectShadowGMM(data, nchannels, nmodes, gmm, mean, Tb, TB, tau) ?
shadowVal : 255;
}
}
}
const Mat* src;
Mat* dst;
GMM* gmm0;
float* mean0;
uchar* modesUsed0;
int nmixtures;
float alphaT, Tb, TB, Tg;
float varInit, varMin, varMax, prune, tau;
bool detectShadows;
uchar shadowVal;
BinaryFunc cvtfunc;
};
2010-12-29 05:15:58 +08:00
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2()
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
history = defaultHistory2;
varThreshold = defaultVarThreshold2;
bShadowDetection = 1;
nmixtures = defaultNMixtures2;
backgroundRatio = defaultBackgroundRatio2;
fVarInit = defaultVarInit2;
fVarMax = defaultVarMax2;
fVarMin = defaultVarMin2;
varThresholdGen = defaultVarThresholdGen2;
fCT = defaultfCT2;
nShadowDetection = defaultnShadowDetection2;
fTau = defaultfTau;
}
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(int _history, float _varThreshold, bool _bShadowDetection)
2010-12-29 05:15:58 +08:00
{
frameSize = Size(0,0);
frameType = 0;
2010-12-29 05:15:58 +08:00
nframes = 0;
history = _history > 0 ? _history : defaultHistory2;
varThreshold = (_varThreshold>0)? _varThreshold : defaultVarThreshold2;
bShadowDetection = _bShadowDetection;
nmixtures = defaultNMixtures2;
backgroundRatio = defaultBackgroundRatio2;
fVarInit = defaultVarInit2;
fVarMax = defaultVarMax2;
fVarMin = defaultVarMin2;
varThresholdGen = defaultVarThresholdGen2;
fCT = defaultfCT2;
nShadowDetection = defaultnShadowDetection2;
fTau = defaultfTau;
}
2010-12-29 05:15:58 +08:00
BackgroundSubtractorMOG2::~BackgroundSubtractorMOG2()
{
2010-12-29 05:15:58 +08:00
}
void BackgroundSubtractorMOG2::initialize(Size _frameSize, int _frameType)
2010-12-29 05:15:58 +08:00
{
frameSize = _frameSize;
frameType = _frameType;
nframes = 0;
int nchannels = CV_MAT_CN(frameType);
CV_Assert( nchannels <= CV_CN_MAX );
2010-12-29 05:15:58 +08:00
// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes.create(frameSize,CV_8U);
bgmodelUsedModes = Scalar::all(0);
}
void BackgroundSubtractorMOG2::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
{
Mat image = _image.getMat();
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
2010-12-29 05:15:58 +08:00
if( needToInitialize )
initialize(image.size(), image.type());
2010-12-29 05:15:58 +08:00
_fgmask.create( image.size(), CV_8U );
Mat fgmask = _fgmask.getMat();
++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./min( 2*nframes, history );
CV_Assert(learningRate >= 0);
2010-12-29 05:15:58 +08:00
if (learningRate > 0)
{
parallel_for(BlockedRange(0, image.rows),
MOG2Invoker(image, fgmask,
(GMM*)bgmodel.data,
(float*)(bgmodel.data + sizeof(GMM)*nmixtures*image.rows*image.cols),
bgmodelUsedModes.data, nmixtures, (float)learningRate,
(float)varThreshold,
backgroundRatio, varThresholdGen,
fVarInit, fVarMin, fVarMax, fCT, fTau,
bShadowDetection, nShadowDetection));
}
2010-12-29 05:15:58 +08:00
}
void BackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage) const
{
int nchannels = CV_MAT_CN(frameType);
CV_Assert( nchannels == 3 );
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
int firstGaussianIdx = 0;
const GMM* gmm = (GMM*)bgmodel.data;
const Vec3f* mean = reinterpret_cast<const Vec3f*>(gmm + frameSize.width*frameSize.height*nmixtures);
for(int row=0; row<meanBackground.rows; row++)
{
for(int col=0; col<meanBackground.cols; col++)
{
int nmodes = bgmodelUsedModes.at<uchar>(row, col);
Vec3f meanVal;
float totalWeight = 0.f;
for(int gaussianIdx = firstGaussianIdx; gaussianIdx < firstGaussianIdx + nmodes; gaussianIdx++)
{
GMM gaussian = gmm[gaussianIdx];
meanVal += gaussian.weight * mean[gaussianIdx];
totalWeight += gaussian.weight;
if(totalWeight > backgroundRatio)
break;
}
meanVal *= (1.f / totalWeight);
meanBackground.at<Vec3b>(row, col) = Vec3b(meanVal);
firstGaussianIdx += nmixtures;
}
}
switch(CV_MAT_CN(frameType))
{
case 1:
{
vector<Mat> channels;
split(meanBackground, channels);
channels[0].copyTo(backgroundImage);
break;
}
case 3:
{
meanBackground.copyTo(backgroundImage);
break;
}
default:
CV_Error(CV_StsUnsupportedFormat, "");
}
}
}
/* End of file. */