opencv/modules/gpu/src/beliefpropagation_gpu.cpp

225 lines
9.3 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int) { throw_nogpu(); }
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int, float, float, float) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, const CudaStream&) { throw_nogpu(); }
bool cv::gpu::StereoBeliefPropagation_GPU::checkIfGpuCallReasonable() { throw_nogpu(); return false; }
#else /* !defined (HAVE_CUDA) */
static const float DEFAULT_DISC_COST = 1.7f;
static const float DEFAULT_DATA_COST = 10.0f;
static const float DEFAULT_LAMBDA_COST = 0.07f;
typedef DevMem2D_<float> DevMem2Df;
namespace cv { namespace gpu { namespace impl {
extern "C" void load_constants(int ndisp, float disc_cost, float data_cost, float lambda);
extern "C" void comp_data_caller(const DevMem2D& l, const DevMem2D& r, DevMem2Df mdata, const cudaStream_t& stream);
extern "C" void data_down_kernel_caller(int dst_cols, int dst_rows, int src_rows, const DevMem2Df& src, DevMem2Df dst, const cudaStream_t& stream);
extern "C" void level_up(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Df* mu, DevMem2Df* md, DevMem2Df* ml, DevMem2Df* mr, const cudaStream_t& stream);
extern "C" void call_all_iterations(int cols, int rows, int iters, DevMem2Df& u, DevMem2Df& d, DevMem2Df& l, DevMem2Df& r, const DevMem2Df& data, const cudaStream_t& stream);
extern "C" void output_caller(const DevMem2Df& u, const DevMem2Df& d, const DevMem2Df& l, const DevMem2Df& r, const DevMem2Df& data, DevMem2D disp, const cudaStream_t& stream);
}}}
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_)
: ndisp(ndisp_), iters(iters_), levels(levels_), disc_cost(DEFAULT_DISC_COST), data_cost(DEFAULT_DATA_COST), lambda(DEFAULT_LAMBDA_COST), datas(levels_)
{
const int max_supported_ndisp = 1 << (sizeof(unsigned char) * 8);
CV_Assert(0 < ndisp && ndisp <= max_supported_ndisp);
CV_Assert(ndisp % 8 == 0);
}
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_, float disc_cost_, float data_cost_, float lambda_)
: ndisp(ndisp_), iters(iters_), levels(levels_), disc_cost(disc_cost_), data_cost(data_cost_), lambda(lambda_), datas(levels_)
{
const int max_supported_ndisp = 1 << (sizeof(unsigned char) * 8);
CV_Assert(0 < ndisp && ndisp <= max_supported_ndisp);
CV_Assert(ndisp % 8 == 0);
}
static void stereo_bp_gpu_operator(int ndisp, int iters, int levels, float disc_cost, float data_cost, float lambda,
GpuMat& u, GpuMat& d, GpuMat& l, GpuMat& r,
GpuMat& u2, GpuMat& d2, GpuMat& l2, GpuMat& r2,
vector<GpuMat>& datas,
const GpuMat& left, const GpuMat& right, GpuMat& disp,
const cudaStream_t& stream)
{
CV_DbgAssert(left.cols == right.cols && left.rows == right.rows && left.type() == right.type() && left.type() == CV_8U);
const Scalar zero = Scalar::all(0);
int rows = left.rows;
int cols = left.cols;
int divisor = (int)pow(2.f, levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 20;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
disp.create(rows, cols, CV_8U);
u.create(rows * ndisp, cols, CV_32F);
d.create(rows * ndisp, cols, CV_32F);
l.create(rows * ndisp, cols, CV_32F);
r.create(rows * ndisp, cols, CV_32F);
if (levels & 1)
{
u = zero; //can clear less area
d = zero;
l = zero;
r = zero;
}
if (levels > 1)
{
int less_rows = (rows + 1) / 2;
int less_cols = (cols + 1) / 2;
u2.create(less_rows * ndisp, less_cols, CV_32F);
d2.create(less_rows * ndisp, less_cols, CV_32F);
l2.create(less_rows * ndisp, less_cols, CV_32F);
r2.create(less_rows * ndisp, less_cols, CV_32F);
if ((levels & 1) == 0)
{
u2 = zero;
d2 = zero;
l2 = zero;
r2 = zero;
}
}
impl::load_constants(ndisp, disc_cost, data_cost, lambda);
vector<int> cols_all(levels);
vector<int> rows_all(levels);
vector<int> iters_all(levels);
cols_all[0] = cols;
rows_all[0] = rows;
iters_all[0] = iters;
datas[0].create(rows * ndisp, cols, CV_32F);
//datas[0] = Scalar(data_cost); //DOTO did in kernel, but not sure if correct
impl::comp_data_caller(left, right, datas.front(), stream);
for (int i = 1; i < levels; i++)
{
cols_all[i] = (cols_all[i-1] + 1)/2;
rows_all[i] = (rows_all[i-1] + 1)/2;
// this is difference from Felzenszwalb algorithm
// we reduce iters num for each next level
iters_all[i] = max(2 * iters_all[i-1] / 3, 1);
datas[i].create(rows_all[i] * ndisp, cols_all[i], CV_32F);
impl::data_down_kernel_caller(cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], stream);
}
DevMem2D_<float> mus[] = {u, u2};
DevMem2D_<float> mds[] = {d, d2};
DevMem2D_<float> mrs[] = {r, r2};
DevMem2D_<float> mls[] = {l, l2};
int mem_idx = (levels & 1) ? 0 : 1;
for (int i = levels - 1; i >= 0; i--) // for lower level we have already computed messages by setting to zero
{
if (i != levels - 1)
impl::level_up(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, stream);
impl::call_all_iterations(cols_all[i], rows_all[i], iters_all[i], mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream);
mem_idx = (mem_idx + 1) & 1;
}
impl::output_caller(u, d, l, r, datas.front(), disp, stream);
}
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
{
::stereo_bp_gpu_operator(ndisp, iters, levels, disc_cost, data_cost, lambda, u, d, l, r, u2, d2, l2, r2, datas, left, right, disp, 0);
}
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const CudaStream& stream)
{
::stereo_bp_gpu_operator(ndisp, iters, levels, disc_cost, data_cost, lambda, u, d, l, r, u2, d2, l2, r2, datas, left, right, disp, StreamAccessor::getStream(stream));
}
bool cv::gpu::StereoBeliefPropagation_GPU::checkIfGpuCallReasonable()
{
if (0 == getCudaEnabledDeviceCount())
return false;
int device = getDevice();
int minor, major;
getComputeCapability(device, &major, &minor);
int numSM = getNumberOfSMs(device);
if (major > 1 || numSM > 16)
return true;
return false;
}
#endif /* !defined (HAVE_CUDA) */