2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
2017-11-24 18:22:59 +08:00
|
|
|
#include <opencv2/core/ocl.hpp>
|
|
|
|
#include <opencv2/ts/ocl_test.hpp>
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
namespace cvtest
|
|
|
|
{
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static std::string _tf(TString filename)
|
|
|
|
{
|
|
|
|
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
|
|
|
}
|
|
|
|
|
2017-10-28 00:01:41 +08:00
|
|
|
TEST(Test_Caffe, memory_read)
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
|
|
|
|
|
|
|
|
string dataProto;
|
|
|
|
ASSERT_TRUE(readFileInMemory(proto, dataProto));
|
|
|
|
string dataModel;
|
|
|
|
ASSERT_TRUE(readFileInMemory(model, dataModel));
|
|
|
|
|
|
|
|
Net net = readNetFromCaffe(dataProto.c_str(), dataProto.size());
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
Net net2 = readNetFromCaffe(dataProto.c_str(), dataProto.size(),
|
|
|
|
dataModel.c_str(), dataModel.size());
|
|
|
|
ASSERT_FALSE(net2.empty());
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
TEST(Test_Caffe, read_gtsrb)
|
|
|
|
{
|
2017-08-03 22:43:52 +08:00
|
|
|
Net net = readNetFromCaffe(_tf("gtsrb.prototxt"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_Caffe, read_googlenet)
|
|
|
|
{
|
2017-08-03 22:43:52 +08:00
|
|
|
Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-10-28 00:01:41 +08:00
|
|
|
typedef testing::TestWithParam<tuple<bool> > Reproducibility_AlexNet;
|
|
|
|
TEST_P(Reproducibility_AlexNet, Accuracy)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-10-28 00:01:41 +08:00
|
|
|
bool readFromMemory = get<0>(GetParam());
|
2017-06-26 18:35:51 +08:00
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
|
2017-10-28 00:01:41 +08:00
|
|
|
if (readFromMemory)
|
|
|
|
{
|
|
|
|
string dataProto;
|
|
|
|
ASSERT_TRUE(readFileInMemory(proto, dataProto));
|
|
|
|
string dataModel;
|
|
|
|
ASSERT_TRUE(readFileInMemory(model, dataModel));
|
|
|
|
|
|
|
|
net = readNetFromCaffe(dataProto.c_str(), dataProto.size(),
|
|
|
|
dataModel.c_str(), dataModel.size());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
net = readNetFromCaffe(proto, model);
|
2017-08-03 22:43:52 +08:00
|
|
|
ASSERT_FALSE(net.empty());
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
|
2017-06-26 18:35:51 +08:00
|
|
|
Mat out = net.forward("prob");
|
|
|
|
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
2017-10-28 00:01:41 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(Test_Caffe, Reproducibility_AlexNet, testing::Values(true, false));
|
|
|
|
|
2017-11-24 18:22:59 +08:00
|
|
|
typedef testing::TestWithParam<tuple<bool> > Reproducibility_OCL_AlexNet;
|
|
|
|
OCL_TEST_P(Reproducibility_OCL_AlexNet, Accuracy)
|
|
|
|
{
|
|
|
|
bool readFromMemory = get<0>(GetParam());
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
|
|
|
|
if (readFromMemory)
|
|
|
|
{
|
|
|
|
string dataProto;
|
|
|
|
ASSERT_TRUE(readFileInMemory(proto, dataProto));
|
|
|
|
string dataModel;
|
|
|
|
ASSERT_TRUE(readFileInMemory(model, dataModel));
|
|
|
|
|
|
|
|
net = readNetFromCaffe(dataProto.c_str(), dataProto.size(),
|
|
|
|
dataModel.c_str(), dataModel.size());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
net = readNetFromCaffe(proto, model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
|
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL);
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
|
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
|
|
|
|
Mat out = net.forward("prob");
|
|
|
|
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
OCL_INSTANTIATE_TEST_CASE_P(Test_Caffe, Reproducibility_OCL_AlexNet, testing::Values(true, false));
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
#if !defined(_WIN32) || defined(_WIN64)
|
|
|
|
TEST(Reproducibility_FCN, Accuracy)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false);
|
2017-08-03 22:43:52 +08:00
|
|
|
net = readNetFromCaffe(proto, model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
|
|
|
|
std::vector<int> layerIds;
|
|
|
|
std::vector<size_t> weights, blobs;
|
|
|
|
net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs);
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data");
|
2017-06-26 18:35:51 +08:00
|
|
|
Mat out = net.forward("score");
|
2017-09-19 14:07:33 +08:00
|
|
|
|
|
|
|
Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH);
|
|
|
|
int shape[] = {1, 21, 500, 500};
|
|
|
|
Mat ref(4, shape, CV_32FC1, refData.data);
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TEST(Reproducibility_SSD, Accuracy)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/ssd_vgg16.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false);
|
2017-08-03 22:43:52 +08:00
|
|
|
net = readNetFromCaffe(proto, model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
|
|
|
|
if (sample.channels() == 4)
|
|
|
|
cvtColor(sample, sample, COLOR_BGRA2BGR);
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
2017-06-26 18:35:51 +08:00
|
|
|
net.setInput(in_blob, "data");
|
|
|
|
Mat out = net.forward("detection_out");
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("ssd_out.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
2017-07-03 21:29:30 +08:00
|
|
|
|
2017-10-30 15:17:57 +08:00
|
|
|
TEST(Reproducibility_MobileNet_SSD, Accuracy)
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
|
|
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
|
|
|
net.setInput(inp);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
|
|
|
|
// Check that detections aren't preserved.
|
|
|
|
inp.setTo(0.0f);
|
|
|
|
net.setInput(inp);
|
|
|
|
out = net.forward();
|
|
|
|
|
|
|
|
const int numDetections = out.size[2];
|
|
|
|
ASSERT_NE(numDetections, 0);
|
|
|
|
for (int i = 0; i < numDetections; ++i)
|
|
|
|
{
|
|
|
|
float confidence = out.ptr<float>(0, 0, i)[2];
|
|
|
|
ASSERT_EQ(confidence, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-24 18:22:59 +08:00
|
|
|
OCL_TEST(Reproducibility_MobileNet_SSD, Accuracy)
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false);
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
|
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL);
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("street.png"));
|
|
|
|
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
|
|
|
net.setInput(inp);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
|
|
|
|
// Check that detections aren't preserved.
|
|
|
|
inp.setTo(0.0f);
|
|
|
|
net.setInput(inp);
|
|
|
|
out = net.forward();
|
|
|
|
|
|
|
|
const int numDetections = out.size[2];
|
|
|
|
ASSERT_NE(numDetections, 0);
|
|
|
|
for (int i = 0; i < numDetections; ++i)
|
|
|
|
{
|
|
|
|
float confidence = out.ptr<float>(0, 0, i)[2];
|
|
|
|
ASSERT_EQ(confidence, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-07-03 21:29:30 +08:00
|
|
|
TEST(Reproducibility_ResNet50, Accuracy)
|
|
|
|
{
|
|
|
|
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false),
|
|
|
|
findDataFile("dnn/ResNet-50-model.caffemodel", false));
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
|
2017-07-03 21:29:30 +08:00
|
|
|
ASSERT_TRUE(!input.empty());
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("resnet50_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
2017-11-24 18:22:59 +08:00
|
|
|
OCL_TEST(Reproducibility_ResNet50, Accuracy)
|
|
|
|
{
|
|
|
|
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false),
|
|
|
|
findDataFile("dnn/ResNet-50-model.caffemodel", false));
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
|
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL);
|
|
|
|
|
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false);
|
|
|
|
ASSERT_TRUE(!input.empty());
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("resnet50_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
2017-07-03 21:29:30 +08:00
|
|
|
TEST(Reproducibility_SqueezeNet_v1_1, Accuracy)
|
|
|
|
{
|
|
|
|
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false),
|
|
|
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false);
|
2017-07-03 21:29:30 +08:00
|
|
|
ASSERT_TRUE(!input.empty());
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
Mat out = net.forward();
|
2017-11-24 18:22:59 +08:00
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
OCL_TEST(Reproducibility_SqueezeNet_v1_1, Accuracy)
|
|
|
|
{
|
|
|
|
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false),
|
|
|
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
|
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL);
|
|
|
|
|
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false);
|
|
|
|
ASSERT_TRUE(!input.empty());
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
Mat out = net.forward();
|
2017-07-03 21:29:30 +08:00
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
2017-09-08 18:31:29 +08:00
|
|
|
TEST(Reproducibility_AlexNet_fp16, Accuracy)
|
|
|
|
{
|
|
|
|
const float l1 = 1e-5;
|
2017-09-19 14:07:33 +08:00
|
|
|
const float lInf = 3e-3;
|
2017-09-08 18:31:29 +08:00
|
|
|
|
|
|
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
|
|
|
|
|
|
|
|
shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16");
|
|
|
|
Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16");
|
|
|
|
|
|
|
|
Mat sample = imread(findDataFile("dnn/grace_hopper_227.png", false));
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false));
|
2017-09-08 18:31:29 +08:00
|
|
|
Mat out = net.forward();
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy", false));
|
|
|
|
normAssert(ref, out, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
|
|
|
|
{
|
|
|
|
const float l1 = 1e-5;
|
|
|
|
const float lInf = 3e-3;
|
|
|
|
|
|
|
|
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
|
|
|
|
|
|
|
|
shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16");
|
|
|
|
Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16");
|
|
|
|
|
|
|
|
std::vector<Mat> inpMats;
|
|
|
|
inpMats.push_back( imread(_tf("googlenet_0.png")) );
|
|
|
|
inpMats.push_back( imread(_tf("googlenet_1.png")) );
|
|
|
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
|
|
|
|
|
2017-09-19 14:07:33 +08:00
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data");
|
2017-09-08 18:31:29 +08:00
|
|
|
Mat out = net.forward("prob");
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
2017-10-05 18:04:22 +08:00
|
|
|
// https://github.com/richzhang/colorization
|
|
|
|
TEST(Reproducibility_Colorization, Accuracy)
|
|
|
|
{
|
|
|
|
const float l1 = 1e-5;
|
|
|
|
const float lInf = 3e-3;
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("colorization_inp.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("colorization_out.npy"));
|
|
|
|
Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy"));
|
|
|
|
|
|
|
|
const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false);
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
|
|
|
|
|
|
net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel);
|
|
|
|
net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606));
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(out, ref, "", l1, lInf);
|
|
|
|
}
|
|
|
|
|
2017-10-16 20:43:28 +08:00
|
|
|
TEST(Reproducibility_DenseNet_121, Accuracy)
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/DenseNet_121.prototxt", false);
|
|
|
|
const string model = findDataFile("dnn/DenseNet_121.caffemodel", false);
|
|
|
|
|
|
|
|
Mat inp = imread(_tf("dog416.png"));
|
|
|
|
inp = blobFromImage(inp, 1.0 / 255, Size(224, 224));
|
|
|
|
Mat ref = blobFromNPY(_tf("densenet_121_output.npy"));
|
|
|
|
|
|
|
|
Net net = readNetFromCaffe(proto, model);
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(out, ref);
|
|
|
|
}
|
|
|
|
|
2017-11-02 21:21:06 +08:00
|
|
|
TEST(Test_Caffe, multiple_inputs)
|
|
|
|
{
|
|
|
|
const string proto = findDataFile("dnn/layers/net_input.prototxt", false);
|
|
|
|
Net net = readNetFromCaffe(proto);
|
|
|
|
|
|
|
|
Mat first_image(10, 11, CV_32FC3);
|
|
|
|
Mat second_image(10, 11, CV_32FC3);
|
|
|
|
randu(first_image, -1, 1);
|
|
|
|
randu(second_image, -1, 1);
|
|
|
|
|
|
|
|
first_image = blobFromImage(first_image);
|
|
|
|
second_image = blobFromImage(second_image);
|
|
|
|
|
|
|
|
Mat first_image_blue_green = slice(first_image, Range::all(), Range(0, 2), Range::all(), Range::all());
|
|
|
|
Mat first_image_red = slice(first_image, Range::all(), Range(2, 3), Range::all(), Range::all());
|
|
|
|
Mat second_image_blue_green = slice(second_image, Range::all(), Range(0, 2), Range::all(), Range::all());
|
|
|
|
Mat second_image_red = slice(second_image, Range::all(), Range(2, 3), Range::all(), Range::all());
|
|
|
|
|
|
|
|
net.setInput(first_image_blue_green, "old_style_input_blue_green");
|
|
|
|
net.setInput(first_image_red, "different_name_for_red");
|
|
|
|
net.setInput(second_image_blue_green, "input_layer_blue_green");
|
|
|
|
net.setInput(second_image_red, "old_style_input_red");
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(out, first_image + second_image);
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|