opencv/samples/python/texture_flow.py

56 lines
1.2 KiB
Python
Raw Normal View History

2013-03-06 14:41:02 +08:00
#!/usr/bin/env python
2012-08-20 01:36:50 +08:00
'''
Texture flow direction estimation.
Sample shows how cv.cornerEigenValsAndVecs function can be used
2012-08-20 01:36:50 +08:00
to estimate image texture flow direction.
Usage:
texture_flow.py [<image>]
'''
# Python 2/3 compatibility
from __future__ import print_function
2012-08-20 01:36:50 +08:00
import numpy as np
import cv2 as cv
2012-08-20 01:36:50 +08:00
def main():
2012-08-20 01:36:50 +08:00
import sys
2013-03-06 14:41:02 +08:00
try:
fn = sys.argv[1]
except:
2018-11-14 23:56:21 +08:00
fn = 'starry_night.jpg'
2012-08-20 01:36:50 +08:00
2018-11-14 23:56:21 +08:00
img = cv.imread(cv.samples.findFile(fn))
2013-03-06 14:41:02 +08:00
if img is None:
print('Failed to load image file:', fn)
2013-03-06 14:41:02 +08:00
sys.exit(1)
2013-04-12 21:39:16 +08:00
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
2012-08-20 01:36:50 +08:00
h, w = img.shape[:2]
eigen = cv.cornerEigenValsAndVecs(gray, 15, 3)
2012-08-20 01:36:50 +08:00
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
flow = eigen[:,:,2]
vis = img.copy()
vis[:] = (192 + np.uint32(vis)) / 2
d = 12
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
for x, y in np.int32(points):
vx, vy = np.int32(flow[y, x]*d)
cv.line(vis, (x-vx, y-vy), (x+vx, y+vy), (0, 0, 0), 1, cv.LINE_AA)
cv.imshow('input', img)
cv.imshow('flow', vis)
cv.waitKey()
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()