2020-02-18 20:11:44 +08:00
|
|
|
#include <algorithm>
|
|
|
|
#include <iostream>
|
|
|
|
#include <cctype>
|
|
|
|
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
#include <opencv2/imgcodecs.hpp>
|
|
|
|
#include <opencv2/gapi.hpp>
|
|
|
|
#include <opencv2/gapi/core.hpp>
|
|
|
|
#include <opencv2/gapi/imgproc.hpp>
|
|
|
|
#include <opencv2/gapi/infer.hpp>
|
|
|
|
#include <opencv2/gapi/render.hpp>
|
|
|
|
#include <opencv2/gapi/infer/ie.hpp>
|
|
|
|
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
|
|
|
#include <opencv2/gapi/streaming/cap.hpp>
|
|
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
|
|
|
|
const std::string about =
|
|
|
|
"This is an OpenCV-based version of Privacy Masking Camera example";
|
|
|
|
const std::string keys =
|
|
|
|
"{ h help | | Print this help message }"
|
|
|
|
"{ input | | Path to the input video file }"
|
|
|
|
"{ platm | vehicle-license-plate-detection-barrier-0106.xml | Path to OpenVINO IE vehicle/plate detection model (.xml) }"
|
|
|
|
"{ platd | CPU | Target device for vehicle/plate detection model (e.g. CPU, GPU, VPU, ...) }"
|
|
|
|
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
|
|
|
|
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
|
|
|
|
"{ trad | false | Run processing in a traditional (non-pipelined) way }"
|
|
|
|
"{ noshow | false | Don't display UI (improves performance) }";
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
std::string weights_path(const std::string &model_path) {
|
|
|
|
const auto EXT_LEN = 4u;
|
|
|
|
const auto sz = model_path.size();
|
|
|
|
CV_Assert(sz > EXT_LEN);
|
|
|
|
|
|
|
|
auto ext = model_path.substr(sz - EXT_LEN);
|
|
|
|
|
2020-02-27 14:59:02 +08:00
|
|
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return static_cast<unsigned char>(std::tolower(c)); });
|
2020-02-18 20:11:44 +08:00
|
|
|
CV_Assert(ext == ".xml");
|
|
|
|
|
|
|
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace custom {
|
|
|
|
|
|
|
|
G_API_NET(VehLicDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector");
|
|
|
|
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
|
|
|
|
|
|
|
|
using GDetections = cv::GArray<cv::Rect>;
|
|
|
|
|
|
|
|
G_API_OP(ParseSSD, <GDetections(cv::GMat, cv::GMat, int)>, "custom.privacy_masking.postproc") {
|
|
|
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &, int) {
|
|
|
|
return cv::empty_array_desc();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
|
|
|
|
|
|
|
|
G_API_OP(ToMosaic, <GPrims(GDetections, GDetections)>, "custom.privacy_masking.to_mosaic") {
|
|
|
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GArrayDesc &) {
|
|
|
|
return cv::empty_array_desc();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
|
|
|
|
static void run(const cv::Mat &in_ssd_result,
|
|
|
|
const cv::Mat &in_frame,
|
|
|
|
const int filter_label,
|
|
|
|
std::vector<cv::Rect> &out_objects) {
|
|
|
|
const auto &in_ssd_dims = in_ssd_result.size;
|
|
|
|
CV_Assert(in_ssd_dims.dims() == 4u);
|
|
|
|
|
|
|
|
const int MAX_PROPOSALS = in_ssd_dims[2];
|
|
|
|
const int OBJECT_SIZE = in_ssd_dims[3];
|
|
|
|
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
|
|
|
|
|
|
|
|
const cv::Size upscale = in_frame.size();
|
|
|
|
const cv::Rect surface({0,0}, upscale);
|
|
|
|
|
|
|
|
out_objects.clear();
|
|
|
|
|
|
|
|
const float *data = in_ssd_result.ptr<float>();
|
|
|
|
for (int i = 0; i < MAX_PROPOSALS; i++) {
|
|
|
|
const float image_id = data[i * OBJECT_SIZE + 0];
|
|
|
|
const float label = data[i * OBJECT_SIZE + 1];
|
|
|
|
const float confidence = data[i * OBJECT_SIZE + 2];
|
|
|
|
const float rc_left = data[i * OBJECT_SIZE + 3];
|
|
|
|
const float rc_top = data[i * OBJECT_SIZE + 4];
|
|
|
|
const float rc_right = data[i * OBJECT_SIZE + 5];
|
|
|
|
const float rc_bottom = data[i * OBJECT_SIZE + 6];
|
|
|
|
|
|
|
|
if (image_id < 0.f) {
|
|
|
|
break; // marks end-of-detections
|
|
|
|
}
|
|
|
|
if (confidence < 0.5f) {
|
|
|
|
continue; // skip objects with low confidence
|
|
|
|
}
|
|
|
|
if (filter_label != -1 && static_cast<int>(label) != filter_label) {
|
|
|
|
continue; // filter out object classes if filter is specified
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Rect rc; // map relative coordinates to the original image scale
|
|
|
|
rc.x = static_cast<int>(rc_left * upscale.width);
|
|
|
|
rc.y = static_cast<int>(rc_top * upscale.height);
|
|
|
|
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
|
|
|
|
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
|
|
|
|
out_objects.emplace_back(rc & surface);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
GAPI_OCV_KERNEL(OCVToMosaic, ToMosaic) {
|
|
|
|
static void run(const std::vector<cv::Rect> &in_plate_rcs,
|
|
|
|
const std::vector<cv::Rect> &in_face_rcs,
|
|
|
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
|
|
|
|
out_prims.clear();
|
|
|
|
const auto cvt = [](cv::Rect rc) {
|
|
|
|
// Align the mosaic region to mosaic block size
|
|
|
|
const int BLOCK_SIZE = 24;
|
|
|
|
const int dw = BLOCK_SIZE - (rc.width % BLOCK_SIZE);
|
|
|
|
const int dh = BLOCK_SIZE - (rc.height % BLOCK_SIZE);
|
|
|
|
rc.width += dw;
|
|
|
|
rc.height += dh;
|
|
|
|
rc.x -= dw / 2;
|
|
|
|
rc.y -= dh / 2;
|
|
|
|
return cv::gapi::wip::draw::Mosaic{rc, BLOCK_SIZE, 0};
|
|
|
|
};
|
|
|
|
for (auto &&rc : in_plate_rcs) { out_prims.emplace_back(cvt(rc)); }
|
|
|
|
for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc)); }
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace custom
|
|
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
|
|
{
|
|
|
|
cv::CommandLineParser cmd(argc, argv, keys);
|
|
|
|
cmd.about(about);
|
|
|
|
if (cmd.has("help")) {
|
|
|
|
cmd.printMessage();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
const std::string input = cmd.get<std::string>("input");
|
|
|
|
const bool no_show = cmd.get<bool>("noshow");
|
|
|
|
const bool run_trad = cmd.get<bool>("trad");
|
|
|
|
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GMat blob_plates = cv::gapi::infer<custom::VehLicDetector>(in);
|
|
|
|
cv::GMat blob_faces = cv::gapi::infer<custom::FaceDetector>(in);
|
|
|
|
// VehLicDetector from Open Model Zoo marks vehicles with label "1" and
|
|
|
|
// license plates with label "2", filter out license plates only.
|
|
|
|
cv::GArray<cv::Rect> rc_plates = custom::ParseSSD::on(blob_plates, in, 2);
|
|
|
|
// Face detector produces faces only so there's no need to filter by label,
|
|
|
|
// pass "-1".
|
|
|
|
cv::GArray<cv::Rect> rc_faces = custom::ParseSSD::on(blob_faces, in, -1);
|
|
|
|
cv::GMat out = cv::gapi::wip::draw::render3ch(in, custom::ToMosaic::on(rc_plates, rc_faces));
|
|
|
|
cv::GComputation graph(in, out);
|
|
|
|
|
|
|
|
const auto plate_model_path = cmd.get<std::string>("platm");
|
|
|
|
auto plate_net = cv::gapi::ie::Params<custom::VehLicDetector> {
|
|
|
|
plate_model_path, // path to topology IR
|
|
|
|
weights_path(plate_model_path), // path to weights
|
|
|
|
cmd.get<std::string>("platd"), // device specifier
|
|
|
|
};
|
|
|
|
const auto face_model_path = cmd.get<std::string>("facem");
|
|
|
|
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
|
|
|
|
face_model_path, // path to topology IR
|
|
|
|
weights_path(face_model_path), // path to weights
|
|
|
|
cmd.get<std::string>("faced"), // device specifier
|
|
|
|
};
|
|
|
|
auto kernels = cv::gapi::kernels<custom::OCVParseSSD, custom::OCVToMosaic>();
|
|
|
|
auto networks = cv::gapi::networks(plate_net, face_net);
|
|
|
|
|
|
|
|
cv::TickMeter tm;
|
|
|
|
cv::Mat out_frame;
|
|
|
|
std::size_t frames = 0u;
|
|
|
|
std::cout << "Reading " << input << std::endl;
|
|
|
|
|
|
|
|
if (run_trad) {
|
|
|
|
cv::Mat in_frame;
|
|
|
|
cv::VideoCapture cap(input);
|
|
|
|
cap >> in_frame;
|
|
|
|
|
|
|
|
auto exec = graph.compile(cv::descr_of(in_frame), cv::compile_args(kernels, networks));
|
|
|
|
tm.start();
|
|
|
|
do {
|
|
|
|
exec(in_frame, out_frame);
|
|
|
|
if (!no_show) {
|
|
|
|
cv::imshow("Out", out_frame);
|
|
|
|
cv::waitKey(1);
|
|
|
|
}
|
|
|
|
frames++;
|
|
|
|
} while (cap.read(in_frame));
|
|
|
|
tm.stop();
|
|
|
|
} else {
|
|
|
|
auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks));
|
|
|
|
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
|
|
|
|
pipeline.start();
|
|
|
|
tm.start();
|
|
|
|
|
|
|
|
while (pipeline.pull(cv::gout(out_frame))) {
|
|
|
|
frames++;
|
|
|
|
if (!no_show) {
|
|
|
|
cv::imshow("Out", out_frame);
|
|
|
|
cv::waitKey(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tm.stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::cout << "Processed " << frames << " frames"
|
|
|
|
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
|
|
|
|
return 0;
|
|
|
|
}
|