opencv/modules/python/opencv2x.h

704 lines
20 KiB
C
Raw Normal View History

#ifndef OPENCV2X_PYTHON_WRAPPERS
#define OPENCV2X_PYTHON_WRAPPERS
#include "opencv2/core/core.hpp"
2010-11-03 01:58:22 +08:00
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/video/background_segm.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv_extra_api.hpp"
#define ERRWRAP2(expr) \
try \
{ \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}
2010-11-03 01:58:22 +08:00
using namespace cv;
typedef vector<uchar> vector_uchar;
typedef vector<int> vector_int;
typedef vector<float> vector_float;
typedef vector<double> vector_double;
typedef vector<Point> vector_Point;
typedef vector<Point2f> vector_Point2f;
typedef vector<Vec2f> vector_Vec2f;
typedef vector<Vec3f> vector_Vec3f;
typedef vector<Vec4i> vector_Vec4i;
typedef vector<Rect> vector_Rect;
typedef vector<KeyPoint> vector_KeyPoint;
typedef vector<Mat> vector_Mat;
typedef vector<vector<Point> > vector_vector_Point;
typedef vector<vector<Point2f> > vector_vector_Point2f;
typedef vector<vector<Point3f> > vector_vector_Point3f;
static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
(0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);
static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}
static inline int* refcountFromPyObject(const PyObject* obj)
{
return (int*)((size_t)obj + REFCOUNT_OFFSET);
}
class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() {}
~NumpyAllocator() {}
void allocate(int dims, const int* sizes, int type, int*& refcount,
uchar*& datastart, uchar*& data, size_t* step)
{
static int ncalls = 0;
int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i;
npy_intp _sizes[CV_MAX_DIM+1];
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
{
if( _sizes[dims-1] == 1 )
_sizes[dims-1] = cn;
else
_sizes[dims++] = cn;
}
PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
if(!o)
CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
refcount = refcountFromPyObject(o);
npy_intp* _strides = PyArray_STRIDES(o);
2010-11-03 01:58:22 +08:00
for( i = 0; i < dims - (cn > 1); i++ )
step[i] = (size_t)_strides[i];
datastart = data = (uchar*)PyArray_DATA(o);
}
void deallocate(int* refcount, uchar* datastart, uchar* data)
{
static int ncalls = 0;
if( !refcount )
return;
PyObject* o = pyObjectFromRefcount(refcount);
2010-11-03 01:58:22 +08:00
Py_INCREF(o);
Py_DECREF(o);
}
};
NumpyAllocator g_numpyAllocator;
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
2010-11-03 01:58:22 +08:00
static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true)
{
static int call_idx = 0;
2010-11-03 01:58:22 +08:00
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array", name);
2010-11-03 01:58:22 +08:00
return false;
}
int typenum = PyArray_TYPE(o);
int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
failmsg("%s data type = %d is not supported", name, typenum);
2010-11-03 01:58:22 +08:00
return false;
}
int ndims = PyArray_NDIM(o);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", name, ndims);
2010-11-03 01:58:22 +08:00
return false;
}
int size[CV_MAX_DIM+1];
2010-11-03 01:58:22 +08:00
size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(o);
const npy_intp* _strides = PyArray_STRIDES(o);
for(int i = 0; i < ndims; i++)
{
size[i] = (int)_sizes[i];
step[i] = (size_t)_strides[i];
}
if( ndims == 0 || step[ndims-1] > elemsize ) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
2010-11-03 01:58:22 +08:00
if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}
2010-11-03 01:58:22 +08:00
if( ndims > 2 && !allowND )
{
2010-11-03 01:58:22 +08:00
failmsg("%s has more than 2 dimensions", name);
return false;
}
2010-11-03 01:58:22 +08:00
m = Mat(ndims, size, type, PyArray_DATA(o), step);
if( m.data )
{
m.refcount = refcountFromPyObject(o);
2010-11-03 01:58:22 +08:00
m.addref(); // protect the original numpy array from deallocation
// (since Mat destructor will decrement the reference counter)
};
m.allocator = &g_numpyAllocator;
2010-11-03 01:58:22 +08:00
return true;
}
2010-11-03 01:58:22 +08:00
static PyObject* pyopencv_from(const Mat& m)
{
2010-11-03 01:58:22 +08:00
Mat temp, *p = (Mat*)&m;
if(!p->refcount || p->allocator != &g_numpyAllocator)
{
pyopencv_to(Py_None, temp);
m.copyTo(temp);
p = &temp;
}
p->addref();
return pyObjectFromRefcount(p->refcount);
}
2010-11-03 01:58:22 +08:00
static bool pyopencv_to(PyObject *o, Scalar& s, const char *name = "<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!o || o == Py_None)
return true;
if (PySequence_Check(o)) {
PyObject *fi = PySequence_Fast(o, name);
if (fi == NULL)
2010-11-03 01:58:22 +08:00
return false;
if (4 < PySequence_Fast_GET_SIZE(fi))
{
failmsg("Scalar value for argument '%s' is longer than 4", name);
2010-11-03 01:58:22 +08:00
return false;
}
for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(fi); i++) {
PyObject *item = PySequence_Fast_GET_ITEM(fi, i);
if (PyFloat_Check(item) || PyInt_Check(item)) {
s[i] = PyFloat_AsDouble(item);
} else {
failmsg("Scalar value for argument '%s' is not numeric", name);
2010-11-03 01:58:22 +08:00
return false;
}
}
Py_DECREF(fi);
} else {
if (PyFloat_Check(o) || PyInt_Check(o)) {
s[0] = PyFloat_AsDouble(o);
} else {
failmsg("Scalar value for argument '%s' is not numeric", name);
2010-11-03 01:58:22 +08:00
return false;
}
}
2010-11-03 01:58:22 +08:00
return true;
}
2010-11-03 01:58:22 +08:00
static inline PyObject* pyopencv_from(const Scalar& src)
{
return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
}
2010-11-03 01:58:22 +08:00
static PyObject* pyopencv_from(bool value)
{
2010-11-03 01:58:22 +08:00
return PyBool_FromLong(value);
}
static bool pyopencv_to(PyObject* obj, bool& value, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
int _val = PyObject_IsTrue(obj);
if(_val < 0)
return false;
value = _val > 0;
return true;
}
static PyObject* pyopencv_from(size_t value)
{
return PyLong_FromUnsignedLong((unsigned long)value);
}
2010-11-03 01:58:22 +08:00
static PyObject* pyopencv_from(int value)
{
return PyInt_FromLong(value);
}
2010-11-03 01:58:22 +08:00
static bool pyopencv_to(PyObject* obj, int& value, const char* name = "<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!obj || obj == Py_None)
return true;
value = (int)PyInt_AsLong(obj);
return value != -1 || !PyErr_Occurred();
}
static PyObject* pyopencv_from(double value)
{
return PyFloat_FromDouble(value);
}
static bool pyopencv_to(PyObject* obj, double& value, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
if(PyInt_CheckExact(obj))
value = (double)PyInt_AS_LONG(obj);
else
2010-11-03 01:58:22 +08:00
value = PyFloat_AsDouble(obj);
return !PyErr_Occurred();
}
2010-11-03 01:58:22 +08:00
static PyObject* pyopencv_from(float value)
{
2010-11-03 01:58:22 +08:00
return PyFloat_FromDouble(value);
}
2010-11-03 01:58:22 +08:00
static bool pyopencv_to(PyObject* obj, float& value, const char* name = "<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!obj || obj == Py_None)
return true;
if(PyInt_CheckExact(obj))
value = (float)PyInt_AS_LONG(obj);
else
value = (float)PyFloat_AsDouble(obj);
return !PyErr_Occurred();
}
2010-11-03 01:58:22 +08:00
static PyObject* pyopencv_from(const string& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
2010-11-03 01:58:22 +08:00
static bool pyopencv_to(PyObject* obj, string& value, const char* name = "<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!obj || obj == Py_None)
return true;
char* str = PyString_AsString(obj);
if(!str)
return false;
value = string(str);
return true;
}
static inline bool pyopencv_to(PyObject* obj, Size& sz, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
return PyArg_Parse(obj, "ii", &sz.width, &sz.height) > 0;
}
static inline PyObject* pyopencv_from(const Size& sz)
{
return Py_BuildValue("(ii)", sz.width, sz.height);
}
static inline bool pyopencv_to(PyObject* obj, Rect& r, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
return PyArg_Parse(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
}
static inline PyObject* pyopencv_from(const Rect& r)
{
return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
}
static inline bool pyopencv_to(PyObject* obj, Range& r, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
{
2010-11-03 01:58:22 +08:00
r = Range::all();
return true;
}
2010-11-03 01:58:22 +08:00
return PyArg_Parse(obj, "ii", &r.start, &r.end) > 0;
}
static inline PyObject* pyopencv_from(const Range& r)
{
return Py_BuildValue("(ii)", r.start, r.end);
}
static inline bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
{
r = CV_WHOLE_SEQ;
return true;
}
return PyArg_Parse(obj, "ii", &r.start_index, &r.end_index) > 0;
}
static inline PyObject* pyopencv_from(const CvSlice& r)
{
return Py_BuildValue("(ii)", r.start_index, r.end_index);
}
static inline bool pyopencv_to(PyObject* obj, Point& p, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
if(PyComplex_CheckExact(obj))
{
Py_complex c = PyComplex_AsCComplex(obj);
p.x = saturate_cast<int>(c.real);
p.y = saturate_cast<int>(c.imag);
return true;
}
return PyArg_Parse(obj, "ii", &p.x, &p.y) > 0;
}
static inline bool pyopencv_to(PyObject* obj, Point2f& p, const char* name = "<unknown>")
{
if(!obj || obj == Py_None)
return true;
if(PyComplex_CheckExact(obj))
{
2010-11-03 01:58:22 +08:00
Py_complex c = PyComplex_AsCComplex(obj);
p.x = saturate_cast<float>(c.real);
p.y = saturate_cast<float>(c.imag);
return true;
}
return PyArg_Parse(obj, "ff", &p.x, &p.y) > 0;
}
static inline PyObject* pyopencv_from(const Point& p)
{
return Py_BuildValue("(ii)", p.x, p.y);
}
static inline PyObject* pyopencv_from(const Point2f& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
static inline bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name = "<unknown>")
{
if(!obj)
return true;
return PyArg_Parse(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
}
static inline PyObject* pyopencv_from(const Vec3d& v)
{
return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
}
static inline PyObject* pyopencv_from(const Point2d& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<typename _Tp> struct pyopencvVecConverter
{
static bool to(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
{
typedef typename DataType<_Tp>::channel_type _Cp;
if(!obj)
return true;
if (PyArray_Check(obj))
{
Mat m;
pyopencv_to(obj, m, name);
m.copyTo(value);
}
if (!PySequence_Check(obj))
return false;
PyObject *seq = PySequence_Fast(obj, name);
if (seq == NULL)
return false;
int i, j, n = (int)PySequence_Fast_GET_SIZE(seq);
value.resize(n);
int type = DataType<_Tp>::type;
int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
PyObject** items = PySequence_Fast_ITEMS(seq);
for( i = 0; i < n; i++ )
{
PyObject* item = items[i];
PyObject* seq_i = 0;
PyObject** items_i = &item;
_Cp* data = (_Cp*)&value[i];
if( channels == 2 && PyComplex_CheckExact(item) )
{
Py_complex c = PyComplex_AsCComplex(obj);
data[0] = saturate_cast<_Cp>(c.real);
data[1] = saturate_cast<_Cp>(c.imag);
continue;
}
if( channels > 1 )
{
if( PyArray_Check(obj))
{
Mat src;
pyopencv_to(obj, src, name);
if( src.dims != 2 || src.channels() != 1 ||
((src.cols != 1 || src.rows != channels) &&
(src.cols != channels || src.rows != 1)))
break;
Mat dst(src.rows, src.cols, depth, data);
src.convertTo(dst, type);
if( dst.data != (uchar*)data )
break;
continue;
}
seq_i = PySequence_Fast(item, name);
if( !seq_i || (int)PySequence_Fast_GET_SIZE(seq_i) != channels )
{
Py_XDECREF(seq_i);
break;
}
items_i = PySequence_Fast_ITEMS(seq_i);
}
for( j = 0; j < channels; j++ )
{
PyObject* item_ij = items_i[j];
if( PyInt_Check(item_ij))
{
int v = PyInt_AsLong(item_ij);
if( v == -1 && PyErr_Occurred() )
break;
data[j] = saturate_cast<_Cp>(v);
}
else if( PyFloat_Check(item_ij))
{
double v = PyFloat_AsDouble(item_ij);
if( PyErr_Occurred() )
break;
data[j] = saturate_cast<_Cp>(v);
}
else
break;
}
Py_XDECREF(seq_i);
if( j < channels )
break;
}
Py_DECREF(seq);
return i == n;
}
2010-11-03 01:58:22 +08:00
static PyObject* from(const vector<_Tp>& value)
{
if(value.empty())
return PyTuple_New(0);
Mat src((int)value.size(), DataType<_Tp>::channels, DataType<_Tp>::depth, (uchar*)&value[0]);
return pyopencv_from(src);
}
};
template<typename _Tp> static inline bool pyopencv_to(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
{
return pyopencvVecConverter<_Tp>::to(obj, value, name);
}
template<typename _Tp> static inline PyObject* pyopencv_from(const vector<_Tp>& value)
{
return pyopencvVecConverter<_Tp>::from(value);
}
static PyObject* pyopencv_from(const KeyPoint&);
static bool pyopencv_from(PyObject*,KeyPoint&,const char*);
template<typename _Tp> static inline bool pyopencv_to_generic_vec(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
{
if (!PySequence_Check(obj))
return false;
PyObject *seq = PySequence_Fast(obj, name);
if (seq == NULL)
return false;
int i, n = (int)PySequence_Fast_GET_SIZE(seq);
value.resize(n);
2010-11-03 01:58:22 +08:00
PyObject** items = PySequence_Fast_ITEMS(seq);
2010-11-03 01:58:22 +08:00
for( i = 0; i < n; i++ )
{
PyObject* item = items[i];
if(!pyopencv_to(item, value[i], name))
break;
}
Py_DECREF(seq);
return i == n;
}
template<typename _Tp> static inline PyObject* pyopencv_from_generic_vec(const vector<_Tp>& value)
{
int i, n = (int)value.size();
PyObject* seq = PyTuple_New(n);
for( i = 0; i < n; i++ )
{
PyObject* item = pyopencv_from(value[i]);
if(!item)
break;
PyTuple_SET_ITEM(seq, i, item);
}
if( i < n )
{
2010-11-03 01:58:22 +08:00
Py_DECREF(seq);
return 0;
}
2010-11-03 01:58:22 +08:00
return seq;
}
template<typename _Tp> struct pyopencvVecConverter<vector<_Tp> >
{
static bool to(PyObject* obj, vector<vector<_Tp> >& value, const char* name="<unknown>")
{
return pyopencv_to_generic_vec(obj, value, name);
}
2010-11-03 01:58:22 +08:00
static PyObject* from(const vector<vector<_Tp> >& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<Mat>
{
static bool to(PyObject* obj, vector<Mat>& value, const char* name="<unknown>")
{
return pyopencv_to_generic_vec(obj, value, name);
}
2010-11-03 01:58:22 +08:00
static PyObject* from(const vector<Mat>& value)
{
return pyopencv_from_generic_vec(value);
}
};
2010-11-03 01:58:22 +08:00
template<> struct pyopencvVecConverter<KeyPoint>
{
2010-11-03 01:58:22 +08:00
static bool to(PyObject* obj, vector<KeyPoint>& value, const char* name="<unknown>")
{
return pyopencv_to_generic_vec(obj, value, name);
}
static PyObject* from(const vector<KeyPoint>& value)
{
return pyopencv_from_generic_vec(value);
}
};
2010-11-03 01:58:22 +08:00
static inline bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name="<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
}
2010-11-03 01:58:22 +08:00
static inline PyObject* pyopencv_from(const CvTermCriteria& src)
{
2010-11-03 01:58:22 +08:00
return Py_BuildValue("(iid)", src.type, src.max_iter, src.epsilon);
}
2010-11-03 01:58:22 +08:00
static inline bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name="<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
}
2010-11-03 01:58:22 +08:00
static inline PyObject* pyopencv_from(const TermCriteria& src)
{
2010-11-03 01:58:22 +08:00
return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
}
2010-11-03 01:58:22 +08:00
static inline bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name="<unknown>")
{
2010-11-03 01:58:22 +08:00
if(!obj)
return true;
return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;
}
2010-11-03 01:58:22 +08:00
static inline PyObject* pyopencv_from(const RotatedRect& src)
{
2010-11-03 01:58:22 +08:00
return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
}
2010-11-03 01:58:22 +08:00
static inline PyObject* pyopencv_from(const Moments& m)
{
2010-11-03 01:58:22 +08:00
return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
"m00", m.m00, "m10", m.m10, "m01", m.m01,
"m20", m.m20, "m11", m.m11, "m02", m.m02,
"m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
"mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
"mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
"nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
"nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "mu03", m.nu03);
}
static inline PyObject* pyopencv_from(const CvDTreeNode* node)
{
double value = node->value;
int ivalue = cvRound(value);
return value == ivalue ? PyInt_FromLong(ivalue) : PyFloat_FromDouble(value);
}
#endif