opencv/modules/gapi/test/infer/gapi_infer_ov_tests.cpp

844 lines
27 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2023 Intel Corporation
2023-06-07 22:42:54 +08:00
#if defined HAVE_INF_ENGINE && INF_ENGINE_RELEASE >= 2022010000
#include "../test_precomp.hpp"
#include "backends/ov/util.hpp"
#include <opencv2/gapi/infer/ov.hpp>
#include <openvino/openvino.hpp>
namespace opencv_test
{
namespace {
// FIXME: taken from DNN module
void initDLDTDataPath()
{
#ifndef WINRT
static bool initialized = false;
if (!initialized)
{
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
if (omzDataPath)
cvtest::addDataSearchPath(omzDataPath);
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
if (dnnDataPath) {
// Add the dnnDataPath itself - G-API is using some images there directly
cvtest::addDataSearchPath(dnnDataPath);
cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models"));
}
initialized = true;
}
#endif // WINRT
}
static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/";
// FIXME: taken from the DNN module
void normAssert(cv::InputArray ref, cv::InputArray test,
const char *comment /*= ""*/,
double l1 = 0.00001, double lInf = 0.0001) {
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment;
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment;
}
// TODO: AGNetGenComp, AGNetTypedComp, AGNetOVComp, AGNetOVCompiled
// can be generalized to work with any model and used as parameters for tests.
struct AGNetGenParams {
static constexpr const char* tag = "age-gender-generic";
using Params = cv::gapi::ov::Params<cv::gapi::Generic>;
static Params params(const std::string &xml,
const std::string &bin,
const std::string &device) {
return {tag, xml, bin, device};
}
static Params params(const std::string &blob_path,
const std::string &device) {
return {tag, blob_path, device};
}
};
struct AGNetTypedParams {
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "typed-age-gender");
using Params = cv::gapi::ov::Params<AgeGender>;
static Params params(const std::string &xml_path,
const std::string &bin_path,
const std::string &device) {
return Params {
xml_path, bin_path, device
}.cfgOutputLayers({ "age_conv3", "prob" });
}
};
struct AGNetTypedComp : AGNetTypedParams {
static cv::GComputation create() {
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)};
}
};
struct AGNetGenComp : public AGNetGenParams {
static cv::GComputation create() {
cv::GMat in;
GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)};
}
};
struct AGNetROIGenComp : AGNetGenParams {
static cv::GComputation create() {
cv::GMat in;
cv::GOpaque<cv::Rect> roi;
GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, roi, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
return cv::GComputation{cv::GIn(in, roi), cv::GOut(age, gender)};
}
};
struct AGNetListGenComp : AGNetGenParams {
static cv::GComputation create() {
cv::GMat in;
cv::GArray<cv::Rect> rois;
GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, rois, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)};
}
};
struct AGNetList2GenComp : AGNetGenParams {
static cv::GComputation create() {
cv::GMat in;
cv::GArray<cv::Rect> rois;
GInferListInputs list;
list["data"] = rois;
auto outputs = cv::gapi::infer2<cv::gapi::Generic>(tag, in, list);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)};
}
};
class AGNetOVCompiled {
public:
AGNetOVCompiled(ov::CompiledModel &&compiled_model)
: m_compiled_model(std::move(compiled_model)),
m_infer_request(m_compiled_model.create_infer_request()) {
}
void operator()(const cv::Mat &in_mat,
const cv::Rect &roi,
cv::Mat &age_mat,
cv::Mat &gender_mat) {
// FIXME: W & H could be extracted from model shape
// but it's anyway used only for Age Gender model.
// (Well won't work in case of reshape)
const int W = 62;
const int H = 62;
cv::Mat resized_roi;
cv::resize(in_mat(roi), resized_roi, cv::Size(W, H));
(*this)(resized_roi, age_mat, gender_mat);
}
void operator()(const cv::Mat &in_mat,
const std::vector<cv::Rect> &rois,
std::vector<cv::Mat> &age_mats,
std::vector<cv::Mat> &gender_mats) {
for (size_t i = 0; i < rois.size(); ++i) {
(*this)(in_mat, rois[i], age_mats[i], gender_mats[i]);
}
}
void operator()(const cv::Mat &in_mat,
cv::Mat &age_mat,
cv::Mat &gender_mat) {
auto input_tensor = m_infer_request.get_input_tensor();
cv::gapi::ov::util::to_ov(in_mat, input_tensor);
m_infer_request.infer();
auto age_tensor = m_infer_request.get_tensor("age_conv3");
age_mat.create(cv::gapi::ov::util::to_ocv(age_tensor.get_shape()),
cv::gapi::ov::util::to_ocv(age_tensor.get_element_type()));
cv::gapi::ov::util::to_ocv(age_tensor, age_mat);
auto gender_tensor = m_infer_request.get_tensor("prob");
gender_mat.create(cv::gapi::ov::util::to_ocv(gender_tensor.get_shape()),
cv::gapi::ov::util::to_ocv(gender_tensor.get_element_type()));
cv::gapi::ov::util::to_ocv(gender_tensor, gender_mat);
}
void export_model(const std::string &outpath) {
std::ofstream file{outpath, std::ios::out | std::ios::binary};
GAPI_Assert(file.is_open());
m_compiled_model.export_model(file);
}
private:
ov::CompiledModel m_compiled_model;
ov::InferRequest m_infer_request;
};
struct ImageInputPreproc {
void operator()(ov::preprocess::PrePostProcessor &ppp) {
ppp.input().tensor().set_layout(ov::Layout("NHWC"))
.set_element_type(ov::element::u8)
.set_shape({1, size.height, size.width, 3});
ppp.input().model().set_layout(ov::Layout("NCHW"));
ppp.input().preprocess().resize(::ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR);
}
cv::Size size;
};
class AGNetOVComp {
public:
AGNetOVComp(const std::string &xml_path,
const std::string &bin_path,
const std::string &device)
: m_device(device) {
2023-06-23 20:16:21 +08:00
m_model = cv::gapi::ov::wrap::getCore()
.read_model(xml_path, bin_path);
}
using PrePostProcessF = std::function<void(ov::preprocess::PrePostProcessor&)>;
void cfgPrePostProcessing(PrePostProcessF f) {
ov::preprocess::PrePostProcessor ppp(m_model);
f(ppp);
m_model = ppp.build();
}
AGNetOVCompiled compile() {
2023-06-23 20:16:21 +08:00
auto compiled_model = cv::gapi::ov::wrap::getCore()
.compile_model(m_model, m_device);
return {std::move(compiled_model)};
}
void apply(const cv::Mat &in_mat,
cv::Mat &age_mat,
cv::Mat &gender_mat) {
compile()(in_mat, age_mat, gender_mat);
}
private:
std::string m_device;
std::shared_ptr<ov::Model> m_model;
};
struct BaseAgeGenderOV: public ::testing::Test {
BaseAgeGenderOV() {
initDLDTDataPath();
xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false);
bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false);
device = "CPU";
blob_path = "age-gender-recognition-retail-0013.blob";
}
cv::Mat getRandomImage(const cv::Size &sz) {
cv::Mat image(sz, CV_8UC3);
cv::randu(image, 0, 255);
return image;
}
cv::Mat getRandomTensor(const std::vector<int> &dims,
const int depth) {
cv::Mat tensor(dims, depth);
cv::randu(tensor, -1, 1);
return tensor;
}
std::string xml_path;
std::string bin_path;
std::string blob_path;
std::string device;
};
struct TestAgeGenderOV : public BaseAgeGenderOV {
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
void validate() {
normAssert(ov_age, gapi_age, "Test age output" );
normAssert(ov_gender, gapi_gender, "Test gender output");
}
};
struct TestAgeGenderListOV : public BaseAgeGenderOV {
std::vector<cv::Mat> ov_age, ov_gender,
gapi_age, gapi_gender;
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
TestAgeGenderListOV() {
ov_age.resize(roi_list.size());
ov_gender.resize(roi_list.size());
gapi_age.resize(roi_list.size());
gapi_gender.resize(roi_list.size());
}
void validate() {
ASSERT_EQ(ov_age.size(), ov_gender.size());
ASSERT_EQ(ov_age.size(), gapi_age.size());
ASSERT_EQ(ov_gender.size(), gapi_gender.size());
for (size_t i = 0; i < ov_age.size(); ++i) {
normAssert(ov_age[i], gapi_age[i], "Test age output");
normAssert(ov_gender[i], gapi_gender[i], "Test gender output");
}
}
};
} // anonymous namespace
// TODO: Make all of tests below parmetrized to avoid code duplication
TEST_F(TestAgeGenderOV, Infer_Tensor) {
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetTypedComp::create();
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, Infer_Image) {
const auto in_mat = getRandomImage({300, 300});
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()});
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetTypedComp::create();
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGeneric_Tensor) {
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGenericImage) {
const auto in_mat = getRandomImage({300, 300});
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()});
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGeneric_ImageBlob) {
const auto in_mat = getRandomImage({300, 300});
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()});
auto cc_ref = ref.compile();
// NB: Output blob will contain preprocessing inside.
cc_ref.export_model(blob_path);
cc_ref(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(blob_path, device);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGeneric_TensorBlob) {
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
auto cc_ref = ref.compile();
cc_ref.export_model(blob_path);
cc_ref(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(blob_path, device);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGeneric_BothOutputsFP16) {
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp){
ppp.output(0).tensor().set_element_type(ov::element::f16);
ppp.output(1).tensor().set_element_type(ov::element::f16);
});
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
pp.cfgOutputTensorPrecision(CV_16F);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGeneric_OneOutputFP16) {
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
// OpenVINO
const std::string fp16_output_name = "prob";
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing([&](ov::preprocess::PrePostProcessor &ppp){
ppp.output(fp16_output_name).tensor().set_element_type(ov::element::f16);
});
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
pp.cfgOutputTensorPrecision({{fp16_output_name, CV_16F}});
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferGeneric_ThrowCfgOutputPrecForBlob) {
// OpenVINO (Just for blob compilation)
AGNetOVComp ref(xml_path, bin_path, device);
auto cc_ref = ref.compile();
cc_ref.export_model(blob_path);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(blob_path, device);
EXPECT_ANY_THROW(pp.cfgOutputTensorPrecision(CV_16F));
}
TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigIR) {
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
pp.cfgPluginConfig({{"some_key", "some_value"}});
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigBlob) {
// OpenVINO (Just for blob compilation)
AGNetOVComp ref(xml_path, bin_path, device);
auto cc_ref = ref.compile();
cc_ref.export_model(blob_path);
// G-API
auto comp = AGNetGenComp::create();
auto pp = AGNetGenComp::params(blob_path, device);
pp.cfgPluginConfig({{"some_key", "some_value"}});
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(TestAgeGenderOV, Infer_ThrowInvalidImageLayout) {
const auto in_mat = getRandomImage({300, 300});
auto comp = AGNetTypedComp::create();
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
pp.cfgInputTensorLayout("NCHW");
EXPECT_ANY_THROW(comp.compile(cv::descr_of(in_mat),
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(TestAgeGenderOV, Infer_TensorWithPreproc) {
const auto in_mat = getRandomTensor({1, 240, 320, 3}, CV_32F);
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
auto& input = ppp.input();
input.tensor().set_spatial_static_shape(240, 320)
.set_layout("NHWC");
input.preprocess().resize(ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR);
});
ref.apply(in_mat, ov_age, ov_gender);
// G-API
auto comp = AGNetTypedComp::create();
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
pp.cfgResize(cv::INTER_LINEAR)
.cfgInputTensorLayout("NHWC");
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferROIGeneric_Image) {
const auto in_mat = getRandomImage({300, 300});
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
ppp.input().tensor().set_element_type(ov::element::u8);
ppp.input().tensor().set_layout("NHWC");
});
ref.compile()(in_mat, roi, ov_age, ov_gender);
// G-API
auto comp = AGNetROIGenComp::create();
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowIncorrectLayout) {
const auto in_mat = getRandomImage({300, 300});
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
// G-API
auto comp = AGNetROIGenComp::create();
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
pp.cfgInputTensorLayout("NCHW");
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowTensorInput) {
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
// G-API
auto comp = AGNetROIGenComp::create();
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowExplicitResize) {
const auto in_mat = getRandomImage({300, 300});
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
// G-API
auto comp = AGNetROIGenComp::create();
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
pp.cfgResize(cv::INTER_LINEAR);
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(TestAgeGenderListOV, InferListGeneric_Image) {
const auto in_mat = getRandomImage({300, 300});
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
ppp.input().tensor().set_element_type(ov::element::u8);
ppp.input().tensor().set_layout("NHWC");
});
ref.compile()(in_mat, roi_list, ov_age, ov_gender);
// G-API
auto comp = AGNetListGenComp::create();
auto pp = AGNetListGenComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
TEST_F(TestAgeGenderListOV, InferList2Generic_Image) {
const auto in_mat = getRandomImage({300, 300});
// OpenVINO
AGNetOVComp ref(xml_path, bin_path, device);
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
ppp.input().tensor().set_element_type(ov::element::u8);
ppp.input().tensor().set_layout("NHWC");
});
ref.compile()(in_mat, roi_list, ov_age, ov_gender);
// G-API
auto comp = AGNetList2GenComp::create();
auto pp = AGNetList2GenComp::params(xml_path, bin_path, device);
comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Assert
validate();
}
static ov::element::Type toOV(int depth) {
switch (depth) {
case CV_8U: return ov::element::u8;
case CV_32S: return ov::element::i32;
case CV_32F: return ov::element::f32;
case CV_16F: return ov::element::f16;
default: GAPI_Error("OV Backend: Unsupported data type");
}
return ov::element::undefined;
}
struct TestMeanScaleOV : public ::testing::TestWithParam<int>{
G_API_NET(IdentityNet, <cv::GMat(cv::GMat)>, "test-identity-net");
static cv::GComputation create() {
cv::GMat in;
cv::GMat out;
out = cv::gapi::infer<IdentityNet>(in);
return cv::GComputation{cv::GIn(in), cv::GOut(out)};
}
using Params = cv::gapi::ov::Params<IdentityNet>;
static Params params(const std::string &xml_path,
const std::string &bin_path,
const std::string &device) {
return Params {
xml_path, bin_path, device
}.cfgInputModelLayout("NHWC")
.cfgOutputLayers({ "output" });
}
TestMeanScaleOV() {
initDLDTDataPath();
m_model_path = findDataFile("gapi/ov/identity_net_100x100.xml");
m_weights_path = findDataFile("gapi/ov/identity_net_100x100.bin");
m_device_id = "CPU";
m_ov_model = cv::gapi::ov::wrap::getCore()
.read_model(m_model_path, m_weights_path);
auto input_depth = GetParam();
auto input = cv::imread(findDataFile("gapi/gapi_logo.jpg"));
input.convertTo(m_in_mat, input_depth);
}
void addPreprocToOV(
std::function<void(ov::preprocess::PrePostProcessor&)> f) {
auto input_depth = GetParam();
ov::preprocess::PrePostProcessor ppp(m_ov_model);
ppp.input().tensor().set_layout(ov::Layout("NHWC"))
.set_element_type(toOV(input_depth))
.set_shape({ 1, 100, 100, 3 });
ppp.input().model().set_layout(ov::Layout("NHWC"));
f(ppp);
m_ov_model = ppp.build();
}
void runOV() {
auto compiled_model = cv::gapi::ov::wrap::getCore()
.compile_model(m_ov_model, m_device_id);
auto infer_request = compiled_model.create_infer_request();
auto input_tensor = infer_request.get_input_tensor();
cv::gapi::ov::util::to_ov(m_in_mat, input_tensor);
infer_request.infer();
auto out_tensor = infer_request.get_tensor("output");
m_out_mat_ov.create(cv::gapi::ov::util::to_ocv(out_tensor.get_shape()),
cv::gapi::ov::util::to_ocv(out_tensor.get_element_type()));
cv::gapi::ov::util::to_ocv(out_tensor, m_out_mat_ov);
}
std::string m_model_path;
std::string m_weights_path;
std::string m_device_id;
std::shared_ptr<ov::Model> m_ov_model;
cv::Mat m_in_mat;
cv::Mat m_out_mat_gapi;
cv::Mat m_out_mat_ov;
};
TEST_P(TestMeanScaleOV, Mean)
{
int input_depth = GetParam();
std::vector<float> mean_values{ 220.1779, 218.9857, 217.8986 };
// Run OV reference pipeline:
{
addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) {
if (input_depth == CV_8U || input_depth == CV_32S) {
ppp.input().preprocess().convert_element_type(ov::element::f32);
}
ppp.input().preprocess().mean(mean_values);
});
runOV();
}
// Run G-API
GComputation comp = create();
auto pp = params(m_model_path, m_weights_path, m_device_id);
pp.cfgMean(mean_values);
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi),
cv::compile_args(cv::gapi::networks(pp)));
// Validate OV results against G-API ones:
normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output");
}
TEST_P(TestMeanScaleOV, Scale)
{
int input_depth = GetParam();
std::vector<float> scale_values{ 2., 2., 2. };
// Run OV reference pipeline:
{
addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) {
if (input_depth == CV_8U || input_depth == CV_32S) {
ppp.input().preprocess().convert_element_type(ov::element::f32);
}
ppp.input().preprocess().scale(scale_values);
});
runOV();
}
// Run G-API
GComputation comp = create();
auto pp = params(m_model_path, m_weights_path, m_device_id);
pp.cfgScale(scale_values);
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi),
cv::compile_args(cv::gapi::networks(pp)));
// Validate OV results against G-API ones:
normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output");
}
TEST_P(TestMeanScaleOV, MeanAndScale)
{
int input_depth = GetParam();
std::vector<float> mean_values{ 220.1779, 218.9857, 217.8986 };
std::vector<float> scale_values{ 2., 2., 2. };
// Run OV reference pipeline:
{
addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) {
if (input_depth == CV_8U || input_depth == CV_32S) {
ppp.input().preprocess().convert_element_type(ov::element::f32);
}
ppp.input().preprocess().mean(mean_values);
ppp.input().preprocess().scale(scale_values);
});
runOV();
}
// Run G-API
GComputation comp = create();
auto pp = params(m_model_path, m_weights_path, m_device_id);
pp.cfgMean(mean_values);
pp.cfgScale(scale_values);
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi),
cv::compile_args(cv::gapi::networks(pp)));
// Validate OV results against G-API ones:
normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output");
}
INSTANTIATE_TEST_CASE_P(Instantiation, TestMeanScaleOV,
Values(CV_8U, CV_32S, CV_16F, CV_32F));
} // namespace opencv_test
2023-06-07 22:42:54 +08:00
#endif // HAVE_INF_ENGINE && INF_ENGINE_RELEASE >= 2022010000