2023-06-02 19:31:03 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2023 Intel Corporation
|
|
|
|
|
2023-06-07 22:42:54 +08:00
|
|
|
#if defined HAVE_INF_ENGINE && INF_ENGINE_RELEASE >= 2022010000
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
#include "../test_precomp.hpp"
|
|
|
|
|
|
|
|
#include "backends/ov/util.hpp"
|
|
|
|
|
|
|
|
#include <opencv2/gapi/infer/ov.hpp>
|
|
|
|
|
|
|
|
#include <openvino/openvino.hpp>
|
|
|
|
|
|
|
|
namespace opencv_test
|
|
|
|
{
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
// FIXME: taken from DNN module
|
|
|
|
void initDLDTDataPath()
|
|
|
|
{
|
|
|
|
#ifndef WINRT
|
|
|
|
static bool initialized = false;
|
|
|
|
if (!initialized)
|
|
|
|
{
|
|
|
|
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
|
|
|
|
if (omzDataPath)
|
|
|
|
cvtest::addDataSearchPath(omzDataPath);
|
|
|
|
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
|
|
|
|
if (dnnDataPath) {
|
|
|
|
// Add the dnnDataPath itself - G-API is using some images there directly
|
|
|
|
cvtest::addDataSearchPath(dnnDataPath);
|
|
|
|
cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models"));
|
|
|
|
}
|
|
|
|
initialized = true;
|
|
|
|
}
|
|
|
|
#endif // WINRT
|
|
|
|
}
|
|
|
|
|
|
|
|
static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/";
|
|
|
|
|
|
|
|
// FIXME: taken from the DNN module
|
|
|
|
void normAssert(cv::InputArray ref, cv::InputArray test,
|
|
|
|
const char *comment /*= ""*/,
|
|
|
|
double l1 = 0.00001, double lInf = 0.0001) {
|
|
|
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
|
|
EXPECT_LE(normL1, l1) << comment;
|
|
|
|
|
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
|
|
EXPECT_LE(normInf, lInf) << comment;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: AGNetGenComp, AGNetTypedComp, AGNetOVComp, AGNetOVCompiled
|
|
|
|
// can be generalized to work with any model and used as parameters for tests.
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
struct AGNetGenParams {
|
2023-06-02 19:31:03 +08:00
|
|
|
static constexpr const char* tag = "age-gender-generic";
|
|
|
|
using Params = cv::gapi::ov::Params<cv::gapi::Generic>;
|
|
|
|
|
|
|
|
static Params params(const std::string &xml,
|
|
|
|
const std::string &bin,
|
|
|
|
const std::string &device) {
|
|
|
|
return {tag, xml, bin, device};
|
|
|
|
}
|
|
|
|
|
|
|
|
static Params params(const std::string &blob_path,
|
|
|
|
const std::string &device) {
|
|
|
|
return {tag, blob_path, device};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
struct AGNetTypedParams {
|
2023-06-02 19:31:03 +08:00
|
|
|
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
|
|
|
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "typed-age-gender");
|
|
|
|
using Params = cv::gapi::ov::Params<AgeGender>;
|
|
|
|
|
|
|
|
static Params params(const std::string &xml_path,
|
|
|
|
const std::string &bin_path,
|
|
|
|
const std::string &device) {
|
|
|
|
return Params {
|
|
|
|
xml_path, bin_path, device
|
|
|
|
}.cfgOutputLayers({ "age_conv3", "prob" });
|
|
|
|
}
|
2023-06-20 18:29:23 +08:00
|
|
|
};
|
2023-06-02 19:31:03 +08:00
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
struct AGNetTypedComp : AGNetTypedParams {
|
2023-06-02 19:31:03 +08:00
|
|
|
static cv::GComputation create() {
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GMat age, gender;
|
|
|
|
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
|
|
|
|
return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
struct AGNetGenComp : public AGNetGenParams {
|
|
|
|
static cv::GComputation create() {
|
|
|
|
cv::GMat in;
|
|
|
|
GInferInputs inputs;
|
|
|
|
inputs["data"] = in;
|
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, inputs);
|
|
|
|
auto age = outputs.at("age_conv3");
|
|
|
|
auto gender = outputs.at("prob");
|
|
|
|
return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct AGNetROIGenComp : AGNetGenParams {
|
|
|
|
static cv::GComputation create() {
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GOpaque<cv::Rect> roi;
|
|
|
|
GInferInputs inputs;
|
|
|
|
inputs["data"] = in;
|
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, roi, inputs);
|
|
|
|
auto age = outputs.at("age_conv3");
|
|
|
|
auto gender = outputs.at("prob");
|
|
|
|
return cv::GComputation{cv::GIn(in, roi), cv::GOut(age, gender)};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct AGNetListGenComp : AGNetGenParams {
|
|
|
|
static cv::GComputation create() {
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GArray<cv::Rect> rois;
|
|
|
|
GInferInputs inputs;
|
|
|
|
inputs["data"] = in;
|
|
|
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, rois, inputs);
|
|
|
|
auto age = outputs.at("age_conv3");
|
|
|
|
auto gender = outputs.at("prob");
|
|
|
|
return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct AGNetList2GenComp : AGNetGenParams {
|
|
|
|
static cv::GComputation create() {
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GArray<cv::Rect> rois;
|
|
|
|
GInferListInputs list;
|
|
|
|
list["data"] = rois;
|
|
|
|
auto outputs = cv::gapi::infer2<cv::gapi::Generic>(tag, in, list);
|
|
|
|
auto age = outputs.at("age_conv3");
|
|
|
|
auto gender = outputs.at("prob");
|
|
|
|
return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-06-02 19:31:03 +08:00
|
|
|
class AGNetOVCompiled {
|
|
|
|
public:
|
|
|
|
AGNetOVCompiled(ov::CompiledModel &&compiled_model)
|
2023-06-20 18:29:23 +08:00
|
|
|
: m_compiled_model(std::move(compiled_model)),
|
|
|
|
m_infer_request(m_compiled_model.create_infer_request()) {
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator()(const cv::Mat &in_mat,
|
|
|
|
const cv::Rect &roi,
|
|
|
|
cv::Mat &age_mat,
|
|
|
|
cv::Mat &gender_mat) {
|
|
|
|
// FIXME: W & H could be extracted from model shape
|
|
|
|
// but it's anyway used only for Age Gender model.
|
|
|
|
// (Well won't work in case of reshape)
|
|
|
|
const int W = 62;
|
|
|
|
const int H = 62;
|
|
|
|
cv::Mat resized_roi;
|
|
|
|
cv::resize(in_mat(roi), resized_roi, cv::Size(W, H));
|
|
|
|
(*this)(resized_roi, age_mat, gender_mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator()(const cv::Mat &in_mat,
|
|
|
|
const std::vector<cv::Rect> &rois,
|
|
|
|
std::vector<cv::Mat> &age_mats,
|
|
|
|
std::vector<cv::Mat> &gender_mats) {
|
|
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
|
|
(*this)(in_mat, rois[i], age_mats[i], gender_mats[i]);
|
|
|
|
}
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void operator()(const cv::Mat &in_mat,
|
|
|
|
cv::Mat &age_mat,
|
|
|
|
cv::Mat &gender_mat) {
|
2023-06-20 18:29:23 +08:00
|
|
|
auto input_tensor = m_infer_request.get_input_tensor();
|
|
|
|
cv::gapi::ov::util::to_ov(in_mat, input_tensor);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
m_infer_request.infer();
|
2023-06-02 19:31:03 +08:00
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
auto age_tensor = m_infer_request.get_tensor("age_conv3");
|
2023-06-02 19:31:03 +08:00
|
|
|
age_mat.create(cv::gapi::ov::util::to_ocv(age_tensor.get_shape()),
|
|
|
|
cv::gapi::ov::util::to_ocv(age_tensor.get_element_type()));
|
2023-06-20 18:29:23 +08:00
|
|
|
cv::gapi::ov::util::to_ocv(age_tensor, age_mat);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
auto gender_tensor = m_infer_request.get_tensor("prob");
|
2023-06-02 19:31:03 +08:00
|
|
|
gender_mat.create(cv::gapi::ov::util::to_ocv(gender_tensor.get_shape()),
|
|
|
|
cv::gapi::ov::util::to_ocv(gender_tensor.get_element_type()));
|
2023-06-20 18:29:23 +08:00
|
|
|
cv::gapi::ov::util::to_ocv(gender_tensor, gender_mat);
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void export_model(const std::string &outpath) {
|
|
|
|
std::ofstream file{outpath, std::ios::out | std::ios::binary};
|
|
|
|
GAPI_Assert(file.is_open());
|
|
|
|
m_compiled_model.export_model(file);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
ov::CompiledModel m_compiled_model;
|
2023-06-20 18:29:23 +08:00
|
|
|
ov::InferRequest m_infer_request;
|
2023-06-02 19:31:03 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ImageInputPreproc {
|
|
|
|
void operator()(ov::preprocess::PrePostProcessor &ppp) {
|
|
|
|
ppp.input().tensor().set_layout(ov::Layout("NHWC"))
|
|
|
|
.set_element_type(ov::element::u8)
|
|
|
|
.set_shape({1, size.height, size.width, 3});
|
|
|
|
ppp.input().model().set_layout(ov::Layout("NCHW"));
|
|
|
|
ppp.input().preprocess().resize(::ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR);
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Size size;
|
|
|
|
};
|
|
|
|
|
|
|
|
class AGNetOVComp {
|
|
|
|
public:
|
|
|
|
AGNetOVComp(const std::string &xml_path,
|
|
|
|
const std::string &bin_path,
|
|
|
|
const std::string &device)
|
|
|
|
: m_device(device) {
|
2023-06-23 20:16:21 +08:00
|
|
|
m_model = cv::gapi::ov::wrap::getCore()
|
|
|
|
.read_model(xml_path, bin_path);
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
using PrePostProcessF = std::function<void(ov::preprocess::PrePostProcessor&)>;
|
|
|
|
|
|
|
|
void cfgPrePostProcessing(PrePostProcessF f) {
|
|
|
|
ov::preprocess::PrePostProcessor ppp(m_model);
|
|
|
|
f(ppp);
|
|
|
|
m_model = ppp.build();
|
|
|
|
}
|
|
|
|
|
|
|
|
AGNetOVCompiled compile() {
|
2023-06-23 20:16:21 +08:00
|
|
|
auto compiled_model = cv::gapi::ov::wrap::getCore()
|
|
|
|
.compile_model(m_model, m_device);
|
2023-06-02 19:31:03 +08:00
|
|
|
return {std::move(compiled_model)};
|
|
|
|
}
|
|
|
|
|
|
|
|
void apply(const cv::Mat &in_mat,
|
|
|
|
cv::Mat &age_mat,
|
|
|
|
cv::Mat &gender_mat) {
|
|
|
|
compile()(in_mat, age_mat, gender_mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::string m_device;
|
|
|
|
std::shared_ptr<ov::Model> m_model;
|
|
|
|
};
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
struct BaseAgeGenderOV: public ::testing::Test {
|
|
|
|
BaseAgeGenderOV() {
|
|
|
|
initDLDTDataPath();
|
2023-08-15 16:32:44 +08:00
|
|
|
xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false);
|
|
|
|
bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false);
|
2023-06-20 18:29:23 +08:00
|
|
|
device = "CPU";
|
|
|
|
blob_path = "age-gender-recognition-retail-0013.blob";
|
|
|
|
}
|
2023-06-02 19:31:03 +08:00
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
cv::Mat getRandomImage(const cv::Size &sz) {
|
|
|
|
cv::Mat image(sz, CV_8UC3);
|
|
|
|
cv::randu(image, 0, 255);
|
|
|
|
return image;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat getRandomTensor(const std::vector<int> &dims,
|
|
|
|
const int depth) {
|
|
|
|
cv::Mat tensor(dims, depth);
|
|
|
|
cv::randu(tensor, -1, 1);
|
|
|
|
return tensor;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string xml_path;
|
|
|
|
std::string bin_path;
|
|
|
|
std::string blob_path;
|
|
|
|
std::string device;
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
struct TestAgeGenderOV : public BaseAgeGenderOV {
|
2023-06-02 19:31:03 +08:00
|
|
|
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
void validate() {
|
|
|
|
normAssert(ov_age, gapi_age, "Test age output" );
|
|
|
|
normAssert(ov_gender, gapi_gender, "Test gender output");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct TestAgeGenderListOV : public BaseAgeGenderOV {
|
|
|
|
std::vector<cv::Mat> ov_age, ov_gender,
|
|
|
|
gapi_age, gapi_gender;
|
|
|
|
|
|
|
|
std::vector<cv::Rect> roi_list = {
|
|
|
|
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
|
|
|
|
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
|
|
|
|
};
|
|
|
|
|
|
|
|
TestAgeGenderListOV() {
|
|
|
|
ov_age.resize(roi_list.size());
|
|
|
|
ov_gender.resize(roi_list.size());
|
|
|
|
gapi_age.resize(roi_list.size());
|
|
|
|
gapi_gender.resize(roi_list.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
void validate() {
|
|
|
|
ASSERT_EQ(ov_age.size(), ov_gender.size());
|
|
|
|
|
|
|
|
ASSERT_EQ(ov_age.size(), gapi_age.size());
|
|
|
|
ASSERT_EQ(ov_gender.size(), gapi_gender.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < ov_age.size(); ++i) {
|
|
|
|
normAssert(ov_age[i], gapi_age[i], "Test age output");
|
|
|
|
normAssert(ov_gender[i], gapi_gender[i], "Test gender output");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
// TODO: Make all of tests below parmetrized to avoid code duplication
|
|
|
|
TEST_F(TestAgeGenderOV, Infer_Tensor) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
2023-06-02 19:31:03 +08:00
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetTypedComp::create();
|
|
|
|
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, Infer_Image) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()});
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetTypedComp::create();
|
|
|
|
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_Tensor) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGenericImage) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()});
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_ImageBlob) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()});
|
|
|
|
auto cc_ref = ref.compile();
|
|
|
|
// NB: Output blob will contain preprocessing inside.
|
|
|
|
cc_ref.export_model(blob_path);
|
|
|
|
cc_ref(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(blob_path, device);
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_TensorBlob) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
auto cc_ref = ref.compile();
|
|
|
|
cc_ref.export_model(blob_path);
|
|
|
|
cc_ref(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(blob_path, device);
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_BothOutputsFP16) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp){
|
|
|
|
ppp.output(0).tensor().set_element_type(ov::element::f16);
|
|
|
|
ppp.output(1).tensor().set_element_type(ov::element::f16);
|
|
|
|
});
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
|
|
|
|
pp.cfgOutputTensorPrecision(CV_16F);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_OneOutputFP16) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
const std::string fp16_output_name = "prob";
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing([&](ov::preprocess::PrePostProcessor &ppp){
|
|
|
|
ppp.output(fp16_output_name).tensor().set_element_type(ov::element::f16);
|
|
|
|
});
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
|
|
|
|
pp.cfgOutputTensorPrecision({{fp16_output_name, CV_16F}});
|
|
|
|
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_ThrowCfgOutputPrecForBlob) {
|
2023-06-02 19:31:03 +08:00
|
|
|
// OpenVINO (Just for blob compilation)
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
auto cc_ref = ref.compile();
|
|
|
|
cc_ref.export_model(blob_path);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(blob_path, device);
|
|
|
|
|
|
|
|
EXPECT_ANY_THROW(pp.cfgOutputTensorPrecision(CV_16F));
|
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigIR) {
|
2023-06-02 19:31:03 +08:00
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
|
|
|
|
pp.cfgPluginConfig({{"some_key", "some_value"}});
|
|
|
|
|
|
|
|
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
|
|
|
|
cv::compile_args(cv::gapi::networks(pp))));
|
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigBlob) {
|
2023-06-02 19:31:03 +08:00
|
|
|
// OpenVINO (Just for blob compilation)
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
auto cc_ref = ref.compile();
|
|
|
|
cc_ref.export_model(blob_path);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetGenComp::create();
|
|
|
|
auto pp = AGNetGenComp::params(blob_path, device);
|
|
|
|
pp.cfgPluginConfig({{"some_key", "some_value"}});
|
|
|
|
|
|
|
|
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
|
|
|
|
cv::compile_args(cv::gapi::networks(pp))));
|
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, Infer_ThrowInvalidImageLayout) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
2023-06-02 19:31:03 +08:00
|
|
|
auto comp = AGNetTypedComp::create();
|
|
|
|
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
pp.cfgInputTensorLayout("NCHW");
|
|
|
|
|
|
|
|
EXPECT_ANY_THROW(comp.compile(cv::descr_of(in_mat),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp))));
|
|
|
|
}
|
|
|
|
|
2023-06-20 18:29:23 +08:00
|
|
|
TEST_F(TestAgeGenderOV, Infer_TensorWithPreproc) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 240, 320, 3}, CV_32F);
|
2023-06-02 19:31:03 +08:00
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
|
|
|
auto& input = ppp.input();
|
|
|
|
input.tensor().set_spatial_static_shape(240, 320)
|
|
|
|
.set_layout("NHWC");
|
|
|
|
input.preprocess().resize(ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR);
|
|
|
|
});
|
|
|
|
ref.apply(in_mat, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetTypedComp::create();
|
|
|
|
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
|
|
|
|
pp.cfgResize(cv::INTER_LINEAR)
|
|
|
|
.cfgInputTensorLayout("NHWC");
|
|
|
|
|
|
|
|
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
2023-06-20 18:29:23 +08:00
|
|
|
validate();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(TestAgeGenderOV, InferROIGeneric_Image) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
|
|
|
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
|
|
|
ppp.input().tensor().set_element_type(ov::element::u8);
|
|
|
|
ppp.input().tensor().set_layout("NHWC");
|
|
|
|
});
|
|
|
|
ref.compile()(in_mat, roi, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetROIGenComp::create();
|
|
|
|
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
|
|
|
validate();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowIncorrectLayout) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
|
|
|
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetROIGenComp::create();
|
|
|
|
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
pp.cfgInputTensorLayout("NCHW");
|
|
|
|
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp))));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowTensorInput) {
|
|
|
|
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
|
|
|
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetROIGenComp::create();
|
|
|
|
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp))));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowExplicitResize) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
|
|
|
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetROIGenComp::create();
|
|
|
|
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
pp.cfgResize(cv::INTER_LINEAR);
|
|
|
|
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp))));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(TestAgeGenderListOV, InferListGeneric_Image) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
|
|
|
ppp.input().tensor().set_element_type(ov::element::u8);
|
|
|
|
ppp.input().tensor().set_layout("NHWC");
|
|
|
|
});
|
|
|
|
ref.compile()(in_mat, roi_list, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetListGenComp::create();
|
|
|
|
auto pp = AGNetListGenComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
|
|
|
validate();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(TestAgeGenderListOV, InferList2Generic_Image) {
|
|
|
|
const auto in_mat = getRandomImage({300, 300});
|
|
|
|
|
|
|
|
// OpenVINO
|
|
|
|
AGNetOVComp ref(xml_path, bin_path, device);
|
|
|
|
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
|
|
|
ppp.input().tensor().set_element_type(ov::element::u8);
|
|
|
|
ppp.input().tensor().set_layout("NHWC");
|
|
|
|
});
|
|
|
|
ref.compile()(in_mat, roi_list, ov_age, ov_gender);
|
|
|
|
|
|
|
|
// G-API
|
|
|
|
auto comp = AGNetList2GenComp::create();
|
|
|
|
auto pp = AGNetList2GenComp::params(xml_path, bin_path, device);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Assert
|
|
|
|
validate();
|
2023-06-02 19:31:03 +08:00
|
|
|
}
|
|
|
|
|
2023-12-16 00:32:21 +08:00
|
|
|
static ov::element::Type toOV(int depth) {
|
|
|
|
switch (depth) {
|
|
|
|
case CV_8U: return ov::element::u8;
|
|
|
|
case CV_32S: return ov::element::i32;
|
|
|
|
case CV_32F: return ov::element::f32;
|
|
|
|
case CV_16F: return ov::element::f16;
|
|
|
|
default: GAPI_Error("OV Backend: Unsupported data type");
|
|
|
|
}
|
|
|
|
return ov::element::undefined;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct TestMeanScaleOV : public ::testing::TestWithParam<int>{
|
|
|
|
G_API_NET(IdentityNet, <cv::GMat(cv::GMat)>, "test-identity-net");
|
|
|
|
|
|
|
|
static cv::GComputation create() {
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GMat out;
|
|
|
|
out = cv::gapi::infer<IdentityNet>(in);
|
|
|
|
|
|
|
|
return cv::GComputation{cv::GIn(in), cv::GOut(out)};
|
|
|
|
}
|
|
|
|
|
|
|
|
using Params = cv::gapi::ov::Params<IdentityNet>;
|
|
|
|
static Params params(const std::string &xml_path,
|
|
|
|
const std::string &bin_path,
|
|
|
|
const std::string &device) {
|
|
|
|
return Params {
|
|
|
|
xml_path, bin_path, device
|
|
|
|
}.cfgInputModelLayout("NHWC")
|
|
|
|
.cfgOutputLayers({ "output" });
|
|
|
|
}
|
|
|
|
|
|
|
|
TestMeanScaleOV() {
|
|
|
|
initDLDTDataPath();
|
|
|
|
|
|
|
|
m_model_path = findDataFile("gapi/ov/identity_net_100x100.xml");
|
|
|
|
m_weights_path = findDataFile("gapi/ov/identity_net_100x100.bin");
|
|
|
|
m_device_id = "CPU";
|
|
|
|
|
|
|
|
m_ov_model = cv::gapi::ov::wrap::getCore()
|
|
|
|
.read_model(m_model_path, m_weights_path);
|
|
|
|
|
|
|
|
auto input_depth = GetParam();
|
|
|
|
auto input = cv::imread(findDataFile("gapi/gapi_logo.jpg"));
|
|
|
|
input.convertTo(m_in_mat, input_depth);
|
|
|
|
}
|
|
|
|
|
|
|
|
void addPreprocToOV(
|
|
|
|
std::function<void(ov::preprocess::PrePostProcessor&)> f) {
|
|
|
|
|
|
|
|
auto input_depth = GetParam();
|
|
|
|
|
|
|
|
ov::preprocess::PrePostProcessor ppp(m_ov_model);
|
|
|
|
ppp.input().tensor().set_layout(ov::Layout("NHWC"))
|
|
|
|
.set_element_type(toOV(input_depth))
|
|
|
|
.set_shape({ 1, 100, 100, 3 });
|
|
|
|
ppp.input().model().set_layout(ov::Layout("NHWC"));
|
|
|
|
f(ppp);
|
|
|
|
m_ov_model = ppp.build();
|
|
|
|
}
|
|
|
|
|
|
|
|
void runOV() {
|
|
|
|
auto compiled_model = cv::gapi::ov::wrap::getCore()
|
|
|
|
.compile_model(m_ov_model, m_device_id);
|
|
|
|
auto infer_request = compiled_model.create_infer_request();
|
|
|
|
|
|
|
|
auto input_tensor = infer_request.get_input_tensor();
|
|
|
|
cv::gapi::ov::util::to_ov(m_in_mat, input_tensor);
|
|
|
|
|
|
|
|
infer_request.infer();
|
|
|
|
|
|
|
|
auto out_tensor = infer_request.get_tensor("output");
|
|
|
|
m_out_mat_ov.create(cv::gapi::ov::util::to_ocv(out_tensor.get_shape()),
|
|
|
|
cv::gapi::ov::util::to_ocv(out_tensor.get_element_type()));
|
|
|
|
cv::gapi::ov::util::to_ocv(out_tensor, m_out_mat_ov);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string m_model_path;
|
|
|
|
std::string m_weights_path;
|
|
|
|
std::string m_device_id;
|
|
|
|
|
|
|
|
std::shared_ptr<ov::Model> m_ov_model;
|
|
|
|
|
|
|
|
cv::Mat m_in_mat;
|
|
|
|
cv::Mat m_out_mat_gapi;
|
|
|
|
cv::Mat m_out_mat_ov;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(TestMeanScaleOV, Mean)
|
|
|
|
{
|
|
|
|
int input_depth = GetParam();
|
|
|
|
|
|
|
|
std::vector<float> mean_values{ 220.1779, 218.9857, 217.8986 };
|
|
|
|
|
|
|
|
// Run OV reference pipeline:
|
|
|
|
{
|
|
|
|
addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) {
|
|
|
|
if (input_depth == CV_8U || input_depth == CV_32S) {
|
|
|
|
ppp.input().preprocess().convert_element_type(ov::element::f32);
|
|
|
|
}
|
|
|
|
ppp.input().preprocess().mean(mean_values);
|
|
|
|
});
|
|
|
|
runOV();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Run G-API
|
|
|
|
GComputation comp = create();
|
|
|
|
auto pp = params(m_model_path, m_weights_path, m_device_id);
|
|
|
|
pp.cfgMean(mean_values);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Validate OV results against G-API ones:
|
|
|
|
normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(TestMeanScaleOV, Scale)
|
|
|
|
{
|
|
|
|
int input_depth = GetParam();
|
|
|
|
|
|
|
|
std::vector<float> scale_values{ 2., 2., 2. };
|
|
|
|
|
|
|
|
// Run OV reference pipeline:
|
|
|
|
{
|
|
|
|
addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) {
|
|
|
|
if (input_depth == CV_8U || input_depth == CV_32S) {
|
|
|
|
ppp.input().preprocess().convert_element_type(ov::element::f32);
|
|
|
|
}
|
|
|
|
ppp.input().preprocess().scale(scale_values);
|
|
|
|
});
|
|
|
|
runOV();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Run G-API
|
|
|
|
GComputation comp = create();
|
|
|
|
auto pp = params(m_model_path, m_weights_path, m_device_id);
|
|
|
|
pp.cfgScale(scale_values);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Validate OV results against G-API ones:
|
|
|
|
normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(TestMeanScaleOV, MeanAndScale)
|
|
|
|
{
|
|
|
|
int input_depth = GetParam();
|
|
|
|
|
|
|
|
std::vector<float> mean_values{ 220.1779, 218.9857, 217.8986 };
|
|
|
|
std::vector<float> scale_values{ 2., 2., 2. };
|
|
|
|
|
|
|
|
// Run OV reference pipeline:
|
|
|
|
{
|
|
|
|
addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) {
|
|
|
|
if (input_depth == CV_8U || input_depth == CV_32S) {
|
|
|
|
ppp.input().preprocess().convert_element_type(ov::element::f32);
|
|
|
|
}
|
|
|
|
ppp.input().preprocess().mean(mean_values);
|
|
|
|
ppp.input().preprocess().scale(scale_values);
|
|
|
|
});
|
|
|
|
runOV();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Run G-API
|
|
|
|
GComputation comp = create();
|
|
|
|
auto pp = params(m_model_path, m_weights_path, m_device_id);
|
|
|
|
pp.cfgMean(mean_values);
|
|
|
|
pp.cfgScale(scale_values);
|
|
|
|
|
|
|
|
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi),
|
|
|
|
cv::compile_args(cv::gapi::networks(pp)));
|
|
|
|
|
|
|
|
// Validate OV results against G-API ones:
|
|
|
|
normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output");
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Instantiation, TestMeanScaleOV,
|
|
|
|
Values(CV_8U, CV_32S, CV_16F, CV_32F));
|
|
|
|
|
2023-06-02 19:31:03 +08:00
|
|
|
} // namespace opencv_test
|
|
|
|
|
2023-06-07 22:42:54 +08:00
|
|
|
#endif // HAVE_INF_ENGINE && INF_ENGINE_RELEASE >= 2022010000
|