2020-08-03 22:11:55 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// This file is based on code issued with the following license.
|
|
|
|
/*********************************************************************
|
|
|
|
* Software License Agreement (BSD License)
|
|
|
|
*
|
|
|
|
* Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
* Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
|
|
|
|
* Copyright (C) 2013, Evgeny Toropov, all rights reserved.
|
|
|
|
* Third party copyrights are property of their respective owners.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials provided
|
|
|
|
* with the distribution.
|
|
|
|
* * The name of the copyright holders may not be used to endorse
|
|
|
|
* or promote products derived from this software without specific
|
|
|
|
* prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*********************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Guoshen Yu, Jean-Michel Morel, ASIFT: An Algorithm for Fully Affine
|
2022-09-20 18:34:17 +08:00
|
|
|
Invariant Comparison, Image Processing On Line, 1 (2011), pp. 11-38.
|
2020-08-03 22:11:55 +08:00
|
|
|
https://doi.org/10.5201/ipol.2011.my-asift
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
namespace cv {
|
|
|
|
|
|
|
|
class AffineFeature_Impl CV_FINAL : public AffineFeature
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit AffineFeature_Impl(const Ptr<Feature2D>& backend,
|
|
|
|
int maxTilt, int minTilt, float tiltStep, float rotateStepBase);
|
|
|
|
|
|
|
|
int descriptorSize() const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
return backend_->descriptorSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
int descriptorType() const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
return backend_->descriptorType();
|
|
|
|
}
|
|
|
|
|
|
|
|
int defaultNorm() const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
return backend_->defaultNorm();
|
|
|
|
}
|
|
|
|
|
|
|
|
void detectAndCompute(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
|
|
|
|
OutputArray descriptors, bool useProvidedKeypoints=false) CV_OVERRIDE;
|
|
|
|
|
|
|
|
void setViewParams(const std::vector<float>& tilts, const std::vector<float>& rolls) CV_OVERRIDE;
|
|
|
|
void getViewParams(std::vector<float>& tilts, std::vector<float>& rolls) const CV_OVERRIDE;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void splitKeypointsByView(const std::vector<KeyPoint>& keypoints_,
|
|
|
|
std::vector< std::vector<KeyPoint> >& keypointsByView) const;
|
|
|
|
|
|
|
|
const Ptr<Feature2D> backend_;
|
|
|
|
int maxTilt_;
|
|
|
|
int minTilt_;
|
|
|
|
float tiltStep_;
|
|
|
|
float rotateStepBase_;
|
|
|
|
|
|
|
|
// Tilt factors.
|
|
|
|
std::vector<float> tilts_;
|
|
|
|
// Roll factors.
|
|
|
|
std::vector<float> rolls_;
|
|
|
|
|
|
|
|
private:
|
|
|
|
AffineFeature_Impl(const AffineFeature_Impl &); // copy disabled
|
|
|
|
AffineFeature_Impl& operator=(const AffineFeature_Impl &); // assign disabled
|
|
|
|
};
|
|
|
|
|
|
|
|
AffineFeature_Impl::AffineFeature_Impl(const Ptr<FeatureDetector>& backend,
|
|
|
|
int maxTilt, int minTilt, float tiltStep, float rotateStepBase)
|
|
|
|
: backend_(backend), maxTilt_(maxTilt), minTilt_(minTilt), tiltStep_(tiltStep), rotateStepBase_(rotateStepBase)
|
|
|
|
{
|
|
|
|
int i = minTilt_;
|
|
|
|
if( i == 0 )
|
|
|
|
{
|
|
|
|
tilts_.push_back(1);
|
|
|
|
rolls_.push_back(0);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
float tilt = 1;
|
|
|
|
for( ; i <= maxTilt_; i++ )
|
|
|
|
{
|
|
|
|
tilt *= tiltStep_;
|
|
|
|
float rotateStep = rotateStepBase_ / tilt;
|
|
|
|
int rollN = cvFloor(180.0f / rotateStep);
|
|
|
|
if( rollN * rotateStep == 180.0f )
|
|
|
|
rollN--;
|
|
|
|
for( int j = 0; j <= rollN; j++ )
|
|
|
|
{
|
|
|
|
tilts_.push_back(tilt);
|
|
|
|
rolls_.push_back(rotateStep * j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void AffineFeature_Impl::setViewParams(const std::vector<float>& tilts,
|
|
|
|
const std::vector<float>& rolls)
|
|
|
|
{
|
|
|
|
CV_Assert(tilts.size() == rolls.size());
|
|
|
|
tilts_ = tilts;
|
|
|
|
rolls_ = rolls;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AffineFeature_Impl::getViewParams(std::vector<float>& tilts,
|
|
|
|
std::vector<float>& rolls) const
|
|
|
|
{
|
|
|
|
tilts = tilts_;
|
|
|
|
rolls = rolls_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AffineFeature_Impl::splitKeypointsByView(const std::vector<KeyPoint>& keypoints_,
|
|
|
|
std::vector< std::vector<KeyPoint> >& keypointsByView) const
|
|
|
|
{
|
|
|
|
for( size_t i = 0; i < keypoints_.size(); i++ )
|
|
|
|
{
|
|
|
|
const KeyPoint& kp = keypoints_[i];
|
|
|
|
CV_Assert( kp.class_id >= 0 && kp.class_id < (int)tilts_.size() );
|
|
|
|
keypointsByView[kp.class_id].push_back(kp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class skewedDetectAndCompute : public ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
skewedDetectAndCompute(
|
|
|
|
const std::vector<float>& _tilts,
|
|
|
|
const std::vector<float>& _rolls,
|
|
|
|
std::vector< std::vector<KeyPoint> >& _keypointsCollection,
|
|
|
|
std::vector<Mat>& _descriptorCollection,
|
|
|
|
const Mat& _image,
|
|
|
|
const Mat& _mask,
|
|
|
|
const bool _do_keypoints,
|
|
|
|
const bool _do_descriptors,
|
|
|
|
const Ptr<Feature2D>& _backend)
|
|
|
|
: tilts(_tilts),
|
|
|
|
rolls(_rolls),
|
|
|
|
keypointsCollection(_keypointsCollection),
|
|
|
|
descriptorCollection(_descriptorCollection),
|
|
|
|
image(_image),
|
|
|
|
mask(_mask),
|
|
|
|
do_keypoints(_do_keypoints),
|
|
|
|
do_descriptors(_do_descriptors),
|
|
|
|
backend(_backend) {}
|
|
|
|
|
|
|
|
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
|
|
|
const int begin = range.start;
|
|
|
|
const int end = range.end;
|
|
|
|
|
|
|
|
for( int a = begin; a < end; a++ )
|
|
|
|
{
|
|
|
|
Mat warpedImage, warpedMask;
|
|
|
|
Matx23f pose, invPose;
|
|
|
|
affineSkew(tilts[a], rolls[a], warpedImage, warpedMask, pose);
|
|
|
|
invertAffineTransform(pose, invPose);
|
|
|
|
|
|
|
|
std::vector<KeyPoint> wKeypoints;
|
|
|
|
Mat wDescriptors;
|
|
|
|
if( !do_keypoints )
|
|
|
|
{
|
|
|
|
const std::vector<KeyPoint>& keypointsInView = keypointsCollection[a];
|
|
|
|
if( keypointsInView.size() == 0 ) // when there are no keypoints in this affine view
|
|
|
|
continue;
|
|
|
|
|
|
|
|
std::vector<Point2f> pts_, pts;
|
|
|
|
KeyPoint::convert(keypointsInView, pts_);
|
|
|
|
transform(pts_, pts, pose);
|
|
|
|
wKeypoints.resize(keypointsInView.size());
|
|
|
|
for( size_t wi = 0; wi < wKeypoints.size(); wi++ )
|
|
|
|
{
|
|
|
|
wKeypoints[wi] = keypointsInView[wi];
|
|
|
|
wKeypoints[wi].pt = pts[wi];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
backend->detectAndCompute(warpedImage, warpedMask, wKeypoints, wDescriptors, !do_keypoints);
|
|
|
|
if( do_keypoints )
|
|
|
|
{
|
|
|
|
// KeyPointsFilter::runByPixelsMask( wKeypoints, warpedMask );
|
|
|
|
if( wKeypoints.size() == 0 )
|
|
|
|
{
|
|
|
|
keypointsCollection[a].clear();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
std::vector<Point2f> pts_, pts;
|
|
|
|
KeyPoint::convert(wKeypoints, pts_);
|
|
|
|
transform(pts_, pts, invPose);
|
|
|
|
|
|
|
|
keypointsCollection[a].resize(wKeypoints.size());
|
|
|
|
for( size_t wi = 0; wi < wKeypoints.size(); wi++ )
|
|
|
|
{
|
|
|
|
keypointsCollection[a][wi] = wKeypoints[wi];
|
|
|
|
keypointsCollection[a][wi].pt = pts[wi];
|
|
|
|
keypointsCollection[a][wi].class_id = a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( do_descriptors )
|
|
|
|
wDescriptors.copyTo(descriptorCollection[a]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
void affineSkew(float tilt, float phi,
|
|
|
|
Mat& warpedImage, Mat& warpedMask, Matx23f& pose) const
|
|
|
|
{
|
|
|
|
int h = image.size().height;
|
|
|
|
int w = image.size().width;
|
|
|
|
Mat rotImage;
|
|
|
|
|
|
|
|
Mat mask0;
|
|
|
|
if( mask.empty() )
|
|
|
|
mask0 = Mat(h, w, CV_8UC1, 255);
|
|
|
|
else
|
|
|
|
mask0 = mask;
|
|
|
|
pose = Matx23f(1,0,0,
|
2023-05-17 16:02:01 +08:00
|
|
|
0,1,0);
|
2020-08-03 22:11:55 +08:00
|
|
|
|
|
|
|
if( phi == 0 )
|
|
|
|
image.copyTo(rotImage);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
phi = phi * (float)CV_PI / 180;
|
|
|
|
float s = std::sin(phi);
|
|
|
|
float c = std::cos(phi);
|
|
|
|
Matx22f A(c, -s, s, c);
|
|
|
|
Matx<float, 4, 2> corners(0, 0, (float)w, 0, (float)w,(float)h, 0, (float)h);
|
|
|
|
Mat tf(corners * A.t());
|
|
|
|
Mat tcorners;
|
|
|
|
tf.convertTo(tcorners, CV_32S);
|
|
|
|
Rect rect = boundingRect(tcorners);
|
|
|
|
h = rect.height; w = rect.width;
|
|
|
|
pose = Matx23f(c, -s, -(float)rect.x,
|
|
|
|
s, c, -(float)rect.y);
|
|
|
|
warpAffine(image, rotImage, pose, Size(w, h), INTER_LINEAR, BORDER_REPLICATE);
|
|
|
|
}
|
|
|
|
if( tilt == 1 )
|
|
|
|
warpedImage = rotImage;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
float s = 0.8f * sqrt(tilt * tilt - 1);
|
|
|
|
GaussianBlur(rotImage, rotImage, Size(0, 0), s, 0.01);
|
|
|
|
resize(rotImage, warpedImage, Size(0, 0), 1.0/tilt, 1.0, INTER_NEAREST);
|
|
|
|
pose(0, 0) /= tilt;
|
|
|
|
pose(0, 1) /= tilt;
|
|
|
|
pose(0, 2) /= tilt;
|
|
|
|
}
|
|
|
|
if( phi != 0 || tilt != 1 )
|
|
|
|
warpAffine(mask0, warpedMask, pose, warpedImage.size(), INTER_NEAREST);
|
2023-05-17 16:02:01 +08:00
|
|
|
else
|
|
|
|
warpedMask = mask0;
|
2020-08-03 22:11:55 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const std::vector<float>& tilts;
|
|
|
|
const std::vector<float>& rolls;
|
|
|
|
std::vector< std::vector<KeyPoint> >& keypointsCollection;
|
|
|
|
std::vector<Mat>& descriptorCollection;
|
|
|
|
const Mat& image;
|
|
|
|
const Mat& mask;
|
|
|
|
const bool do_keypoints;
|
|
|
|
const bool do_descriptors;
|
|
|
|
const Ptr<Feature2D>& backend;
|
|
|
|
};
|
|
|
|
|
|
|
|
void AffineFeature_Impl::detectAndCompute(InputArray _image, InputArray _mask,
|
|
|
|
std::vector<KeyPoint>& keypoints,
|
|
|
|
OutputArray _descriptors,
|
|
|
|
bool useProvidedKeypoints)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
|
|
|
bool do_keypoints = !useProvidedKeypoints;
|
|
|
|
bool do_descriptors = _descriptors.needed();
|
|
|
|
Mat image = _image.getMat(), mask = _mask.getMat();
|
|
|
|
Mat descriptors;
|
|
|
|
|
|
|
|
if( (!do_keypoints && !do_descriptors) || _image.empty() )
|
|
|
|
return;
|
|
|
|
|
|
|
|
std::vector< std::vector<KeyPoint> > keypointsCollection(tilts_.size());
|
|
|
|
std::vector< Mat > descriptorCollection(tilts_.size());
|
|
|
|
|
|
|
|
if( do_keypoints )
|
|
|
|
keypoints.clear();
|
|
|
|
else
|
|
|
|
splitKeypointsByView(keypoints, keypointsCollection);
|
|
|
|
|
|
|
|
parallel_for_(Range(0, (int)tilts_.size()), skewedDetectAndCompute(tilts_, rolls_, keypointsCollection, descriptorCollection,
|
|
|
|
image, mask, do_keypoints, do_descriptors, backend_));
|
|
|
|
|
|
|
|
if( do_keypoints )
|
|
|
|
for( size_t i = 0; i < keypointsCollection.size(); i++ )
|
|
|
|
{
|
|
|
|
const std::vector<KeyPoint>& keys = keypointsCollection[i];
|
|
|
|
keypoints.insert(keypoints.end(), keys.begin(), keys.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
if( do_descriptors )
|
|
|
|
{
|
|
|
|
_descriptors.create((int)keypoints.size(), backend_->descriptorSize(), backend_->descriptorType());
|
|
|
|
descriptors = _descriptors.getMat();
|
|
|
|
int iter = 0;
|
|
|
|
for( size_t i = 0; i < descriptorCollection.size(); i++ )
|
|
|
|
{
|
|
|
|
const Mat& descs = descriptorCollection[i];
|
|
|
|
if( descs.empty() )
|
|
|
|
continue;
|
|
|
|
Mat roi(descriptors, Rect(0, iter, descriptors.cols, descs.rows));
|
|
|
|
descs.copyTo(roi);
|
|
|
|
iter += descs.rows;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Ptr<AffineFeature> AffineFeature::create(const Ptr<Feature2D>& backend,
|
|
|
|
int maxTilt, int minTilt, float tiltStep, float rotateStepBase)
|
|
|
|
{
|
|
|
|
CV_Assert(minTilt < maxTilt);
|
|
|
|
CV_Assert(tiltStep > 0);
|
|
|
|
CV_Assert(rotateStepBase > 0);
|
|
|
|
return makePtr<AffineFeature_Impl>(backend, maxTilt, minTilt, tiltStep, rotateStepBase);
|
|
|
|
}
|
|
|
|
|
|
|
|
String AffineFeature::getDefaultName() const
|
|
|
|
{
|
|
|
|
return (Feature2D::getDefaultName() + ".AffineFeature");
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|