mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
96 lines
2.6 KiB
C++
96 lines
2.6 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include "perf_precomp.hpp"
|
||
|
#include <opencv2/dnn/shape_utils.hpp>
|
||
|
|
||
|
namespace opencv_test {
|
||
|
|
||
|
struct Layer_Slice : public TestBaseWithParam<tuple<Backend, Target> >
|
||
|
{
|
||
|
template<int DIMS>
|
||
|
void test_slice(const int* inputShape, const int* begin, const int* end)
|
||
|
{
|
||
|
int backendId = get<0>(GetParam());
|
||
|
int targetId = get<1>(GetParam());
|
||
|
|
||
|
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
|
||
|
for (int i = 0; i < (int)input.total(); ++i)
|
||
|
input.ptr<float>()[i] = (float)(i & 4095);
|
||
|
|
||
|
std::vector<Range> range(DIMS);
|
||
|
for (int i = 0; i < DIMS; ++i)
|
||
|
range[i] = Range(begin[i], end[i]);
|
||
|
|
||
|
Net net;
|
||
|
LayerParams lp;
|
||
|
lp.type = "Slice";
|
||
|
lp.name = "testLayer";
|
||
|
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
|
||
|
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
|
||
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
||
|
|
||
|
// warmup
|
||
|
{
|
||
|
net.setInput(input);
|
||
|
net.setPreferableBackend(backendId);
|
||
|
net.setPreferableTarget(targetId);
|
||
|
Mat out = net.forward();
|
||
|
|
||
|
EXPECT_GT(cv::norm(out, NORM_INF), 0);
|
||
|
#if 0
|
||
|
//normAssert(out, input(range));
|
||
|
cout << input(range).clone().reshape(1, 1) << endl;
|
||
|
cout << out.reshape(1, 1) << endl;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
Mat res = net.forward();
|
||
|
}
|
||
|
|
||
|
SANITY_CHECK_NOTHING();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_1)
|
||
|
{
|
||
|
const int inputShape[4] = {1, 64, 104, 104};
|
||
|
const int begin[] = {0, 32, 0, 0};
|
||
|
const int end[] = {1, 64, 104, 104};
|
||
|
test_slice<4>(inputShape, begin, end);
|
||
|
}
|
||
|
|
||
|
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_2)
|
||
|
{
|
||
|
const int inputShape[4] = {1, 128, 52, 52};
|
||
|
const int begin[] = {0, 64, 0, 0};
|
||
|
const int end[] = {1, 128, 52, 52};
|
||
|
test_slice<4>(inputShape, begin, end);
|
||
|
}
|
||
|
|
||
|
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_3)
|
||
|
{
|
||
|
const int inputShape[4] = {1, 256, 26, 26};
|
||
|
const int begin[] = {0, 128, 0, 0};
|
||
|
const int end[] = {1, 256, 26, 26};
|
||
|
test_slice<4>(inputShape, begin, end);
|
||
|
}
|
||
|
|
||
|
|
||
|
PERF_TEST_P_(Layer_Slice, FastNeuralStyle_eccv16)
|
||
|
{
|
||
|
const int inputShape[4] = {1, 128, 80, 100};
|
||
|
const int begin[] = {0, 0, 2, 2};
|
||
|
const int end[] = {1, 128, 76, 96};
|
||
|
test_slice<4>(inputShape, begin, end);
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false));
|
||
|
|
||
|
} // namespace
|