mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 17:19:07 +08:00
481 lines
15 KiB
C++
481 lines
15 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
/*
|
||
|
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
|
||
|
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
|
||
|
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
|
||
|
*
|
||
|
* Prepared and integrated by Andrew B. Godbehere.
|
||
|
*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
|
||
|
using namespace std;
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
BackgroundSubtractorGMG::BackgroundSubtractorGMG()
|
||
|
{
|
||
|
/*
|
||
|
* Default Parameter Values. Override with algorithm "set" method.
|
||
|
*/
|
||
|
maxFeatures = 64;
|
||
|
learningRate = 0.025;
|
||
|
numInitializationFrames = 120;
|
||
|
quantizationLevels = 16;
|
||
|
backgroundPrior = 0.8;
|
||
|
decisionThreshold = 0.8;
|
||
|
smoothingRadius = 7;
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, flexitype max)
|
||
|
{
|
||
|
minVal = min;
|
||
|
maxVal = max;
|
||
|
|
||
|
if (minVal == maxVal)
|
||
|
{
|
||
|
CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same."));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Parameter validation
|
||
|
*/
|
||
|
if (maxFeatures <= 0)
|
||
|
{
|
||
|
CV_Error_(CV_StsBadArg,
|
||
|
("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures));
|
||
|
}
|
||
|
if (learningRate < 0.0 || learningRate > 1.0)
|
||
|
{
|
||
|
CV_Error_(CV_StsBadArg,
|
||
|
("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.",
|
||
|
learningRate));
|
||
|
}
|
||
|
if (numInitializationFrames < 1)
|
||
|
{
|
||
|
CV_Error_(CV_StsBadArg,
|
||
|
("numInitializationFrames must be at least 1. Instead, it is %d.",
|
||
|
numInitializationFrames));
|
||
|
}
|
||
|
if (quantizationLevels < 1)
|
||
|
{
|
||
|
CV_Error_(CV_StsBadArg,
|
||
|
("quantizationLevels must be at least 1 (preferably more). Instead it is %d.",
|
||
|
quantizationLevels));
|
||
|
}
|
||
|
if (backgroundPrior < 0.0 || backgroundPrior > 1.0)
|
||
|
{
|
||
|
CV_Error_(CV_StsBadArg,
|
||
|
("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.",
|
||
|
backgroundPrior));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Detect and accommodate the image depth
|
||
|
*/
|
||
|
Mat image = _image.getMat();
|
||
|
imageDepth = image.depth(); // 32f, 8u, etc.
|
||
|
numChannels = image.channels();
|
||
|
|
||
|
/*
|
||
|
* Color quantization [0 | | | | max] --> [0 | | max]
|
||
|
* (0) Use double as intermediary to convert all types to int.
|
||
|
* (i) Shift min to 0,
|
||
|
* (ii) max/(num intervals) = factor. x/factor * factor = quantized result, after integer operation.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Data Structure Initialization
|
||
|
*/
|
||
|
Size imsize = image.size();
|
||
|
imWidth = imsize.width;
|
||
|
imHeight = imsize.height;
|
||
|
numPixels = imWidth*imHeight;
|
||
|
pixels.resize(numPixels);
|
||
|
frameNum = 0;
|
||
|
|
||
|
// used to iterate through matrix of type unknown at compile time
|
||
|
elemSize = image.elemSize();
|
||
|
elemSize1 = image.elemSize1();
|
||
|
|
||
|
vector<PixelModelGMG>::iterator pixel;
|
||
|
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||
|
for (pixel = pixels.begin(); pixel != pixel_end; ++pixel)
|
||
|
{
|
||
|
pixel->setMaxFeatures(maxFeatures);
|
||
|
}
|
||
|
|
||
|
fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||
|
posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
|
||
|
isDataInitialized = true;
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask, double newLearningRate)
|
||
|
{
|
||
|
if (!isDataInitialized)
|
||
|
{
|
||
|
CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update learning rate parameter, if desired
|
||
|
*/
|
||
|
if (newLearningRate != -1.0)
|
||
|
{
|
||
|
if (newLearningRate < 0.0 || newLearningRate > 1.0)
|
||
|
{
|
||
|
CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n");
|
||
|
}
|
||
|
this->learningRate = newLearningRate;
|
||
|
}
|
||
|
|
||
|
Mat image = _image.getMat();
|
||
|
|
||
|
_fgmask.create(Size(imHeight,imWidth),CV_8U);
|
||
|
fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||
|
|
||
|
/*
|
||
|
* Iterate over pixels in image
|
||
|
*/
|
||
|
// grab data at each pixel (1,2,3 channels, int, float, etc.)
|
||
|
// grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable.
|
||
|
// multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1()
|
||
|
vector<PixelModelGMG>::iterator pixel;
|
||
|
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||
|
size_t i;
|
||
|
//#pragma omp parallel
|
||
|
for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
|
||
|
{
|
||
|
HistogramFeatureGMG newFeature;
|
||
|
newFeature.color.clear();
|
||
|
for (size_t c = 0; c < numChannels; ++c)
|
||
|
{
|
||
|
/*
|
||
|
* Perform quantization. in each channel. (color-min)*(levels)/(max-min).
|
||
|
* Shifts min to 0 and scales, finally casting to an int.
|
||
|
*/
|
||
|
size_t quantizedColor;
|
||
|
// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
|
||
|
if (imageDepth == CV_8U)
|
||
|
{
|
||
|
uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
|
||
|
}
|
||
|
else if (imageDepth == CV_8S)
|
||
|
{
|
||
|
char *color = (char*)(image.data+elemSize*i+elemSize1*c);
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
|
||
|
}
|
||
|
else if (imageDepth == CV_16U)
|
||
|
{
|
||
|
unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||
|
}
|
||
|
else if (imageDepth == CV_16S)
|
||
|
{
|
||
|
int *color = (int*)(image.data+elemSize*i+elemSize1*c);
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
|
||
|
}
|
||
|
else if (imageDepth == CV_32F)
|
||
|
{
|
||
|
float *color = (float*)image.data+elemSize*i+elemSize1*c;
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||
|
}
|
||
|
else if (imageDepth == CV_32S)
|
||
|
{
|
||
|
long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
|
||
|
}
|
||
|
else if (imageDepth == CV_64F)
|
||
|
{
|
||
|
double *color = (double*)image.data+elemSize*i+elemSize1*c;
|
||
|
quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
|
||
|
}
|
||
|
newFeature.color.push_back(quantizedColor);
|
||
|
}
|
||
|
// now that the feature is ready for use, put it in the histogram
|
||
|
|
||
|
if (frameNum > numInitializationFrames) // typical operation
|
||
|
{
|
||
|
newFeature.likelihood = learningRate;
|
||
|
/*
|
||
|
* (1) Query histogram to find posterior probability of feature under model.
|
||
|
*/
|
||
|
float likelihood = (float)pixel->getLikelihood(newFeature);
|
||
|
|
||
|
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule
|
||
|
float posterior = (likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior));
|
||
|
|
||
|
/*
|
||
|
* (2) feed posterior probability into the posterior image
|
||
|
*/
|
||
|
int row,col;
|
||
|
col = i%imWidth;
|
||
|
row = (i-col)/imWidth;
|
||
|
posteriorImage.at<float>(row,col) = (1.0-posterior);
|
||
|
}
|
||
|
pixel->setLastObservedFeature(newFeature);
|
||
|
}
|
||
|
/*
|
||
|
* (3) Perform filtering and threshold operations to yield final mask image.
|
||
|
*
|
||
|
* 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise
|
||
|
*/
|
||
|
Mat thresholdedPosterior;
|
||
|
threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY);
|
||
|
thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255); // convert image to integer space for further filtering and mask creation
|
||
|
medianBlur(fgMaskImage,fgMaskImage,smoothingRadius);
|
||
|
|
||
|
fgMaskImage.copyTo(_fgmask);
|
||
|
|
||
|
++frameNum; // keep track of how many frames we have processed
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::getPosteriorImage(OutputArray _img)
|
||
|
{
|
||
|
_img.create(Size(imWidth,imHeight),CV_32F);
|
||
|
Mat img = _img.getMat();
|
||
|
posteriorImage.copyTo(img);
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask)
|
||
|
{
|
||
|
CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image
|
||
|
|
||
|
Mat maskImg = _mask.getMat();
|
||
|
//#pragma omp parallel
|
||
|
for (size_t i = 0; i < imHeight; ++i)
|
||
|
{
|
||
|
//#pragma omp parallel
|
||
|
for (size_t j = 0; j < imWidth; ++j)
|
||
|
{
|
||
|
if (frameNum <= numInitializationFrames + 1)
|
||
|
{
|
||
|
// insert previously observed feature into the histogram. -1.0 parameter indicates training.
|
||
|
pixels[i*imWidth+j].insertFeature(-1.0);
|
||
|
if (frameNum >= numInitializationFrames+1) // training is done, normalize
|
||
|
{
|
||
|
pixels[i*imWidth+j].normalizeHistogram();
|
||
|
}
|
||
|
}
|
||
|
// if mask is 0, pixel is identified as a background pixel, so update histogram.
|
||
|
else if (maskImg.at<uchar>(i,j) == 0)
|
||
|
{
|
||
|
pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BackgroundSubtractorGMG::~BackgroundSubtractorGMG()
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
BackgroundSubtractorGMG::PixelModelGMG::PixelModelGMG()
|
||
|
{
|
||
|
numFeatures = 0;
|
||
|
maxFeatures = 0;
|
||
|
}
|
||
|
|
||
|
BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG()
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::PixelModelGMG::setLastObservedFeature(HistogramFeatureGMG f)
|
||
|
{
|
||
|
this->lastObservedFeature = f;
|
||
|
}
|
||
|
|
||
|
double BackgroundSubtractorGMG::PixelModelGMG::getLikelihood(BackgroundSubtractorGMG::HistogramFeatureGMG f)
|
||
|
{
|
||
|
std::list<HistogramFeatureGMG>::iterator feature = histogram.begin();
|
||
|
std::list<HistogramFeatureGMG>::iterator feature_end = histogram.end();
|
||
|
|
||
|
for (feature = histogram.begin(); feature != feature_end; ++feature)
|
||
|
{
|
||
|
// comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG
|
||
|
if (f == *feature)
|
||
|
{
|
||
|
return feature->likelihood;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0.0; // not in histogram, so return 0.
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::PixelModelGMG::insertFeature(double learningRate)
|
||
|
{
|
||
|
|
||
|
std::list<HistogramFeatureGMG>::iterator feature;
|
||
|
std::list<HistogramFeatureGMG>::iterator swap_end;
|
||
|
std::list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||
|
/*
|
||
|
* If feature is in histogram already, add the weights, and move feature to front.
|
||
|
* If there are too many features, remove the end feature and push new feature to beginning
|
||
|
*/
|
||
|
if (learningRate == -1.0) // then, this is a training-mode update.
|
||
|
{
|
||
|
/*
|
||
|
* (1) Check if feature already represented in histogram
|
||
|
*/
|
||
|
lastObservedFeature.likelihood = 1.0;
|
||
|
|
||
|
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||
|
{
|
||
|
if (lastObservedFeature == *feature) // feature in histogram
|
||
|
{
|
||
|
feature->likelihood += lastObservedFeature.likelihood;
|
||
|
// now, move feature to beginning of list and break the loop
|
||
|
HistogramFeatureGMG tomove = *feature;
|
||
|
histogram.erase(feature);
|
||
|
histogram.push_front(tomove);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
if (numFeatures == maxFeatures)
|
||
|
{
|
||
|
histogram.pop_back(); // discard oldest feature
|
||
|
histogram.push_front(lastObservedFeature);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
histogram.push_front(lastObservedFeature);
|
||
|
++numFeatures;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/*
|
||
|
* (1) Scale entire histogram by scaling factor
|
||
|
* (2) Scale input feature.
|
||
|
* (3) Check if feature already represented. If so, simply add.
|
||
|
* (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature.
|
||
|
*/
|
||
|
*this *= (1.0-learningRate);
|
||
|
lastObservedFeature.likelihood = learningRate;
|
||
|
|
||
|
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||
|
{
|
||
|
if (lastObservedFeature == *feature) // feature in histogram
|
||
|
{
|
||
|
lastObservedFeature.likelihood += feature->likelihood;
|
||
|
histogram.erase(feature);
|
||
|
histogram.push_front(lastObservedFeature);
|
||
|
return; // done with the update.
|
||
|
}
|
||
|
}
|
||
|
if (numFeatures == maxFeatures)
|
||
|
{
|
||
|
histogram.pop_back(); // discard oldest feature
|
||
|
histogram.push_front(lastObservedFeature);
|
||
|
normalizeHistogram();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
histogram.push_front(lastObservedFeature);
|
||
|
++numFeatures;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BackgroundSubtractorGMG::PixelModelGMG& BackgroundSubtractorGMG::PixelModelGMG::operator *=(const float &rhs)
|
||
|
{
|
||
|
/*
|
||
|
* Used to scale histogram by a constant factor
|
||
|
*/
|
||
|
list<HistogramFeatureGMG>::iterator feature;
|
||
|
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||
|
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||
|
{
|
||
|
feature->likelihood *= rhs;
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void BackgroundSubtractorGMG::PixelModelGMG::normalizeHistogram()
|
||
|
{
|
||
|
/*
|
||
|
* First, calculate the total weight in the histogram
|
||
|
*/
|
||
|
list<HistogramFeatureGMG>::iterator feature;
|
||
|
list<HistogramFeatureGMG>::iterator last_feature = histogram.end();
|
||
|
double total = 0.0;
|
||
|
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||
|
{
|
||
|
total += feature->likelihood;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Then, if weight is not 0, divide every feature by the total likelihood to re-normalize.
|
||
|
*/
|
||
|
for (feature = histogram.begin(); feature != last_feature; ++feature)
|
||
|
{
|
||
|
if (total != 0.0)
|
||
|
feature->likelihood /= total;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool BackgroundSubtractorGMG::HistogramFeatureGMG::operator ==(HistogramFeatureGMG &rhs)
|
||
|
{
|
||
|
CV_Assert(color.size() == rhs.color.size());
|
||
|
|
||
|
std::vector<size_t>::iterator color_a;
|
||
|
std::vector<size_t>::iterator color_b;
|
||
|
std::vector<size_t>::iterator color_a_end = this->color.end();
|
||
|
std::vector<size_t>::iterator color_b_end = rhs.color.end();
|
||
|
for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b)
|
||
|
{
|
||
|
if (*color_a != *color_b)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
|