mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 06:48:19 +08:00
220 lines
7.6 KiB
C++
220 lines
7.6 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "../precomp.hpp"
|
||
|
#include "layers_common.hpp"
|
||
|
#include "op_halide.hpp"
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace dnn
|
||
|
{
|
||
|
|
||
|
class EltwiseLayerImpl : public EltwiseLayer
|
||
|
{
|
||
|
public:
|
||
|
EltwiseOp op;
|
||
|
std::vector<int> coeffs;
|
||
|
|
||
|
EltwiseLayerImpl(const LayerParams& params)
|
||
|
{
|
||
|
setParamsFrom(params);
|
||
|
op = EltwiseLayer::SUM;
|
||
|
if (params.has("operation"))
|
||
|
{
|
||
|
String operation = params.get<String>("operation").toLowerCase();
|
||
|
if (operation == "prod")
|
||
|
op = EltwiseLayer::PROD;
|
||
|
else if (operation == "sum")
|
||
|
op = EltwiseLayer::SUM;
|
||
|
else if (operation == "max")
|
||
|
op = EltwiseLayer::MAX;
|
||
|
else
|
||
|
CV_Error(cv::Error::StsBadArg, "Unknown operaticon type \"" + operation + "\"");
|
||
|
}
|
||
|
|
||
|
if (params.has("coeff"))
|
||
|
{
|
||
|
DictValue paramCoeff = params.get("coeff");
|
||
|
int i, n = paramCoeff.size();
|
||
|
coeffs.resize(n);
|
||
|
for (i = 0; i < n; i++)
|
||
|
{
|
||
|
coeffs[i] = paramCoeff.get<int>(i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
virtual bool supportBackend(int backendId)
|
||
|
{
|
||
|
return backendId == DNN_BACKEND_DEFAULT ||
|
||
|
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
||
|
}
|
||
|
|
||
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||
|
const int requiredOutputs,
|
||
|
std::vector<MatShape> &outputs,
|
||
|
std::vector<MatShape> &internals) const
|
||
|
{
|
||
|
CV_Assert(inputs.size() >= 2);
|
||
|
CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
|
||
|
CV_Assert(op == SUM || coeffs.size() == 0);
|
||
|
|
||
|
for (int i = 1; i < inputs.size(); i++)
|
||
|
{
|
||
|
CV_Assert(inputs[0] == inputs[i]);
|
||
|
}
|
||
|
|
||
|
outputs.assign(1, inputs[0]);
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
||
|
{
|
||
|
Mat& output = outputs[0];
|
||
|
switch (op)
|
||
|
{
|
||
|
case SUM:
|
||
|
CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
|
||
|
if (0 < coeffs.size())
|
||
|
{
|
||
|
output.setTo(0.);
|
||
|
for (size_t i = 0; i < inputs.size(); i++)
|
||
|
{
|
||
|
output += *inputs[i] * coeffs[i];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
add(*inputs[0], *inputs[1], output);
|
||
|
for (size_t i = 2; i < inputs.size(); i++)
|
||
|
{
|
||
|
output += *inputs[i];
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case PROD:
|
||
|
output.setTo(1.);
|
||
|
for (size_t i = 0; i < inputs.size(); i++)
|
||
|
{
|
||
|
output = output.mul(*inputs[i]);
|
||
|
}
|
||
|
break;
|
||
|
case MAX:
|
||
|
cv::max(*inputs[0], *inputs[1], output);
|
||
|
for (size_t i = 2; i < inputs.size(); i++)
|
||
|
{
|
||
|
cv::max(output, *inputs[i], output);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
CV_Assert(0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input)
|
||
|
{
|
||
|
#ifdef HAVE_HALIDE
|
||
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
||
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
||
|
Halide::Expr topExpr;
|
||
|
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
|
||
|
switch (op)
|
||
|
{
|
||
|
case SUM:
|
||
|
if (coeffs.empty())
|
||
|
{
|
||
|
topExpr = inputBuffers[0](x, y, c, n) +
|
||
|
inputBuffers[1](x, y, c, n);
|
||
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
||
|
topExpr += inputBuffers[i](x, y, c, n);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
topExpr = coeffs[0] * inputBuffers[0](x, y, c, n) +
|
||
|
coeffs[1] * inputBuffers[1](x, y, c, n);
|
||
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
||
|
topExpr += coeffs[i] * inputBuffers[i](x, y, c, n);
|
||
|
}
|
||
|
break;
|
||
|
case PROD:
|
||
|
topExpr = inputBuffers[0](x, y, c, n) *
|
||
|
inputBuffers[1](x, y, c, n);
|
||
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
||
|
topExpr *= inputBuffers[i](x, y, c, n);
|
||
|
break;
|
||
|
case MAX:
|
||
|
topExpr = max(inputBuffers[0](x, y, c, n),
|
||
|
inputBuffers[1](x, y, c, n));
|
||
|
for (int i = 2; i < inputBuffers.size(); ++i)
|
||
|
topExpr = max(topExpr, inputBuffers[i](x, y, c, n));
|
||
|
break;
|
||
|
default:
|
||
|
return Ptr<BackendNode>();
|
||
|
}
|
||
|
top(x, y, c, n) = topExpr;
|
||
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
||
|
#endif // HAVE_HALIDE
|
||
|
return Ptr<BackendNode>();
|
||
|
}
|
||
|
|
||
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||
|
const std::vector<MatShape> &outputs) const
|
||
|
{
|
||
|
(void)outputs; // suppress unused variable warning
|
||
|
CV_Assert(inputs.size());
|
||
|
|
||
|
long flops = inputs.size() * total(inputs[0]);
|
||
|
|
||
|
return flops;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
Ptr<EltwiseLayer> EltwiseLayer::create(const LayerParams& params)
|
||
|
{
|
||
|
return Ptr<EltwiseLayer>(new EltwiseLayerImpl(params));
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|