opencv/modules/dnn/src/layers/prior_box_layer.cpp

380 lines
12 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <float.h>
#include <algorithm>
#include <cmath>
namespace cv
{
namespace dnn
{
class PriorBoxLayerImpl : public PriorBoxLayer
{
public:
bool getParameterDict(const LayerParams &params,
const std::string &parameterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
template<typename T>
T getParameter(const LayerParams &params,
const std::string &parameterName,
const size_t &idx=0,
const bool required=true,
const T& defaultValue=T())
{
DictValue dictValue;
bool success = getParameterDict(params, parameterName, dictValue);
if(!success)
{
if(required)
{
std::string message = _layerName;
message += " layer parameter does not contain ";
message += parameterName;
message += " parameter.";
CV_Error(Error::StsBadArg, message);
}
else
{
return defaultValue;
}
}
return dictValue.get<T>(idx);
}
void getAspectRatios(const LayerParams &params)
{
DictValue aspectRatioParameter;
bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter);
CV_Assert(aspectRatioRetieved);
for (int i = 0; i < aspectRatioParameter.size(); ++i)
{
float aspectRatio = aspectRatioParameter.get<float>(i);
bool alreadyExists = false;
for (size_t j = 0; j < _aspectRatios.size(); ++j)
{
if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6)
{
alreadyExists = true;
break;
}
}
if (!alreadyExists)
{
_aspectRatios.push_back(aspectRatio);
if (_flip)
{
_aspectRatios.push_back(1./aspectRatio);
}
}
}
}
void getVariance(const LayerParams &params)
{
DictValue varianceParameter;
bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter);
CV_Assert(varianceParameterRetrieved);
int varianceSize = varianceParameter.size();
if (varianceSize > 1)
{
// Must and only provide 4 variance.
CV_Assert(varianceSize == 4);
for (int i = 0; i < varianceSize; ++i)
{
float variance = varianceParameter.get<float>(i);
CV_Assert(variance > 0);
_variance.push_back(variance);
}
}
else
{
if (varianceSize == 1)
{
float variance = varianceParameter.get<float>(0);
CV_Assert(variance > 0);
_variance.push_back(variance);
}
else
{
// Set default to 0.1.
_variance.push_back(0.1f);
}
}
}
PriorBoxLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
_minSize = getParameter<unsigned>(params, "min_size");
CV_Assert(_minSize > 0);
_flip = getParameter<bool>(params, "flip");
_clip = getParameter<bool>(params, "clip");
_aspectRatios.clear();
_aspectRatios.push_back(1.);
getAspectRatios(params);
getVariance(params);
_numPriors = _aspectRatios.size();
_maxSize = -1;
if (params.has("max_size"))
{
_maxSize = params.get("max_size").get<float>(0);
CV_Assert(_maxSize > _minSize);
_numPriors += 1;
}
if (params.has("step_h") || params.has("step_w")) {
CV_Assert(!params.has("step"));
_stepY = getParameter<float>(params, "step_h");
CV_Assert(_stepY > 0.);
_stepX = getParameter<float>(params, "step_w");
CV_Assert(_stepX > 0.);
} else if (params.has("step")) {
const float step = getParameter<float>(params, "step");
CV_Assert(step > 0);
_stepY = step;
_stepX = step;
} else {
_stepY = 0;
_stepX = 0;
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size() == 2);
int layerHeight = inputs[0][2];
int layerWidth = inputs[0][3];
// Since all images in a batch has same height and width, we only need to
// generate one set of priors which can be shared across all images.
size_t outNum = 1;
// 2 channels. First channel stores the mean of each prior coordinate.
// Second channel stores the variance of each prior coordinate.
size_t outChannels = 2;
outputs.resize(1, shape(outNum, outChannels,
layerHeight * layerWidth * _numPriors * 4));
return false;
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
int _layerWidth = inputs[0]->size[3];
int _layerHeight = inputs[0]->size[2];
int _imageWidth = inputs[1]->size[3];
int _imageHeight = inputs[1]->size[2];
float stepX, stepY;
if (_stepX == 0 || _stepY == 0) {
stepX = static_cast<float>(_imageWidth) / _layerWidth;
stepY = static_cast<float>(_imageHeight) / _layerHeight;
} else {
stepX = _stepX;
stepY = _stepY;
}
int _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4;
float* outputPtr = outputs[0].ptr<float>();
// first prior: aspect_ratio = 1, size = min_size
int idx = 0;
for (size_t h = 0; h < _layerHeight; ++h)
{
for (size_t w = 0; w < _layerWidth; ++w)
{
_boxWidth = _boxHeight = _minSize;
float center_x = (w + 0.5) * stepX;
float center_y = (h + 0.5) * stepY;
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
if (_maxSize > 0)
{
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
_boxWidth = _boxHeight = sqrt(_minSize * _maxSize);
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
}
// rest of priors
for (size_t r = 0; r < _aspectRatios.size(); ++r)
{
float ar = _aspectRatios[r];
if (fabs(ar - 1.) < 1e-6)
{
continue;
}
_boxWidth = _minSize * sqrt(ar);
_boxHeight = _minSize / sqrt(ar);
// xmin
outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
// ymin
outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
// xmax
outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
// ymax
outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
}
}
}
// clip the prior's coordidate such that it is within [0, 1]
if (_clip)
{
for (size_t d = 0; d < _outChannelSize; ++d)
{
outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.);
}
}
// set the variance.
outputPtr = outputs[0].ptr<float>(0, 1);
if(_variance.size() == 1)
{
Mat secondChannel(outputs[0].size[2], outputs[0].size[3], CV_32F, outputPtr);
secondChannel.setTo(Scalar(_variance[0]));
}
else
{
int count = 0;
for (size_t h = 0; h < _layerHeight; ++h)
{
for (size_t w = 0; w < _layerWidth; ++w)
{
for (size_t i = 0; i < _numPriors; ++i)
{
for (int j = 0; j < 4; ++j)
{
outputPtr[count] = _variance[j];
++count;
}
}
}
}
}
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)outputs; // suppress unused variable warning
long flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += total(inputs[i], 2) * _numPriors * 4;
}
return flops;
}
float _minSize;
float _maxSize;
float _boxWidth;
float _boxHeight;
float _stepX, _stepY;
std::vector<float> _aspectRatios;
std::vector<float> _variance;
bool _flip;
bool _clip;
size_t _numPriors;
static const size_t _numAxes = 4;
static const std::string _layerName;
};
const std::string PriorBoxLayerImpl::_layerName = std::string("PriorBox");
Ptr<PriorBoxLayer> PriorBoxLayer::create(const LayerParams &params)
{
return Ptr<PriorBoxLayer>(new PriorBoxLayerImpl(params));
}
}
}