2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "op_halide.hpp"
|
|
|
|
#include "halide_scheduler.hpp"
|
|
|
|
#include <set>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iostream>
|
|
|
|
#include <sstream>
|
|
|
|
#include <iterator>
|
2017-08-02 22:27:58 +08:00
|
|
|
#include <numeric>
|
2017-06-26 18:35:51 +08:00
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
|
2017-06-29 03:59:02 +08:00
|
|
|
namespace cv {
|
|
|
|
namespace dnn {
|
|
|
|
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
using std::vector;
|
|
|
|
using std::map;
|
|
|
|
using std::make_pair;
|
|
|
|
using std::set;
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
typedef std::vector<MatShape> ShapesVec;
|
|
|
|
|
|
|
|
struct LayerShapes
|
|
|
|
{
|
|
|
|
ShapesVec in, out, internal;
|
|
|
|
// No guarantees that layer which support in-place computations
|
|
|
|
// will be computed in-place (input.data_ptr == output.data_ptr).
|
|
|
|
// If layer said that it could work in-place and layers after it
|
|
|
|
// no longer use input blob, we'll set output = input.
|
|
|
|
bool supportInPlace;
|
|
|
|
LayerShapes() {supportInPlace = false;}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static String toString(const T &v)
|
|
|
|
{
|
|
|
|
std::ostringstream ss;
|
|
|
|
ss << v;
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
2017-12-03 04:52:35 +08:00
|
|
|
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
|
2017-10-11 20:46:20 +08:00
|
|
|
const Scalar& mean, bool swapRB, bool crop)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
2017-12-03 04:52:35 +08:00
|
|
|
std::vector<Mat> images(1, image.getMat());
|
2017-10-11 20:46:20 +08:00
|
|
|
return blobFromImages(images, scalefactor, size, mean, swapRB, crop);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size size,
|
2017-10-11 20:46:20 +08:00
|
|
|
const Scalar& mean_, bool swapRB, bool crop)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<Mat> images = images_;
|
|
|
|
for (int i = 0; i < images.size(); i++)
|
|
|
|
{
|
|
|
|
Size imgSize = images[i].size();
|
|
|
|
if (size == Size())
|
|
|
|
size = imgSize;
|
|
|
|
if (size != imgSize)
|
|
|
|
{
|
2017-10-11 20:46:20 +08:00
|
|
|
if(crop)
|
|
|
|
{
|
|
|
|
float resizeFactor = std::max(size.width / (float)imgSize.width,
|
|
|
|
size.height / (float)imgSize.height);
|
|
|
|
resize(images[i], images[i], Size(), resizeFactor, resizeFactor);
|
|
|
|
Rect crop(Point(0.5 * (images[i].cols - size.width),
|
|
|
|
0.5 * (images[i].rows - size.height)),
|
|
|
|
size);
|
|
|
|
images[i] = images[i](crop);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
resize(images[i], images[i], size);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
if(images[i].depth() == CV_8U)
|
|
|
|
images[i].convertTo(images[i], CV_32F);
|
|
|
|
Scalar mean = mean_;
|
|
|
|
if (swapRB)
|
|
|
|
std::swap(mean[0], mean[2]);
|
|
|
|
|
|
|
|
images[i] -= mean;
|
|
|
|
images[i] *= scalefactor;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t i, nimages = images.size();
|
|
|
|
if(nimages == 0)
|
|
|
|
return Mat();
|
|
|
|
Mat image0 = images[0];
|
|
|
|
int nch = image0.channels();
|
|
|
|
CV_Assert(image0.dims == 2);
|
|
|
|
Mat blob, image;
|
|
|
|
if (nch == 3 || nch == 4)
|
|
|
|
{
|
2017-10-27 19:06:53 +08:00
|
|
|
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
|
2017-06-26 18:35:51 +08:00
|
|
|
blob = Mat(4, sz, CV_32F);
|
|
|
|
Mat ch[4];
|
|
|
|
|
|
|
|
for( i = 0; i < nimages; i++ )
|
|
|
|
{
|
|
|
|
image = images[i];
|
|
|
|
CV_Assert(image.depth() == CV_32F);
|
|
|
|
nch = image.channels();
|
|
|
|
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
|
|
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
|
2017-10-27 19:06:53 +08:00
|
|
|
for( int j = 0; j < nch; j++ )
|
2017-06-26 18:35:51 +08:00
|
|
|
ch[j] = Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, j));
|
|
|
|
if(swapRB)
|
|
|
|
std::swap(ch[0], ch[2]);
|
|
|
|
split(image, ch);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Assert(nch == 1);
|
|
|
|
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
|
|
|
|
blob = Mat(4, sz, CV_32F);
|
|
|
|
|
|
|
|
for( i = 0; i < nimages; i++ )
|
|
|
|
{
|
|
|
|
Mat image = images[i];
|
|
|
|
CV_Assert(image.depth() == CV_32F);
|
|
|
|
nch = image.channels();
|
|
|
|
CV_Assert(image.dims == 2 && (nch == 1));
|
|
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
|
|
|
|
image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return blob;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct LayerPin
|
|
|
|
{
|
|
|
|
int lid;
|
|
|
|
int oid;
|
|
|
|
|
|
|
|
LayerPin(int layerId = -1, int outputId = -1)
|
|
|
|
: lid(layerId), oid(outputId) {}
|
|
|
|
|
|
|
|
bool valid() const
|
|
|
|
{
|
|
|
|
return (lid >= 0 && oid >= 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool equal(const LayerPin &r) const
|
|
|
|
{
|
|
|
|
return (lid == r.lid && oid == r.oid);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator<(const LayerPin &r) const
|
|
|
|
{
|
|
|
|
return lid < r.lid || lid == r.lid && oid < r.oid;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator ==(const LayerPin &r) const
|
|
|
|
{
|
|
|
|
return lid == r.lid && oid == r.oid;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct LayerData
|
|
|
|
{
|
2017-06-28 21:26:55 +08:00
|
|
|
LayerData() : id(-1), flag(0) {}
|
2017-06-26 18:35:51 +08:00
|
|
|
LayerData(int _id, const String &_name, const String &_type, LayerParams &_params)
|
2017-06-28 21:26:55 +08:00
|
|
|
: id(_id), name(_name), type(_type), params(_params), flag(0)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
//add logging info
|
|
|
|
params.name = name;
|
|
|
|
params.type = type;
|
|
|
|
}
|
|
|
|
|
|
|
|
int id;
|
|
|
|
String name;
|
|
|
|
String type;
|
|
|
|
LayerParams params;
|
|
|
|
|
|
|
|
std::vector<LayerPin> inputBlobsId;
|
|
|
|
std::set<int> inputLayersId;
|
|
|
|
std::set<int> requiredOutputs;
|
|
|
|
std::vector<LayerPin> consumers;
|
2017-09-06 15:34:07 +08:00
|
|
|
std::vector<Ptr<BackendWrapper> > outputBlobsWrappers;
|
|
|
|
std::vector<Ptr<BackendWrapper> > inputBlobsWrappers;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Ptr<Layer> layerInstance;
|
|
|
|
std::vector<Mat> outputBlobs;
|
|
|
|
std::vector<Mat*> inputBlobs;
|
|
|
|
std::vector<Mat> internals;
|
2017-11-09 12:57:37 +08:00
|
|
|
std::vector<UMat> umat_outputBlobs;
|
|
|
|
std::vector<UMat> umat_inputBlobs;
|
|
|
|
std::vector<UMat> umat_internals;
|
2017-06-26 18:35:51 +08:00
|
|
|
// Computation nodes of implemented backends (except DEFAULT).
|
|
|
|
std::map<int, Ptr<BackendNode> > backendNodes;
|
|
|
|
// Flag for skip layer computation for specific backend.
|
|
|
|
std::map<int, bool> skipFlags;
|
|
|
|
|
|
|
|
int flag;
|
|
|
|
|
|
|
|
Ptr<Layer> getLayerInstance()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (layerInstance)
|
|
|
|
return layerInstance;
|
|
|
|
|
|
|
|
layerInstance = LayerFactory::createLayerInstance(type, params);
|
|
|
|
if (!layerInstance)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\"");
|
|
|
|
}
|
|
|
|
|
|
|
|
return layerInstance;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//fake layer containing network input blobs
|
|
|
|
struct DataLayer : public Layer
|
|
|
|
{
|
|
|
|
void finalize(const std::vector<Mat*>&, std::vector<Mat>&) {}
|
|
|
|
void forward(std::vector<Mat*>&, std::vector<Mat>&, std::vector<Mat> &) {}
|
2017-11-09 12:57:37 +08:00
|
|
|
void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) {}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
int outputNameToIndex(String tgtName)
|
|
|
|
{
|
|
|
|
int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin());
|
|
|
|
return (idx < (int)outNames.size()) ? idx : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setNames(const std::vector<String> &names)
|
|
|
|
{
|
|
|
|
outNames.assign(names.begin(), names.end());
|
|
|
|
}
|
|
|
|
|
2017-11-02 21:21:06 +08:00
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
CV_Assert(inputs.size() == requiredOutputs);
|
|
|
|
outputs.assign(inputs.begin(), inputs.end());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
private:
|
|
|
|
std::vector<String> outNames;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct BlobManager
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
// Increase references counter to layer output.
|
|
|
|
void addReference(const LayerPin& lp)
|
|
|
|
{
|
|
|
|
std::map<LayerPin, int>::iterator it = refCounter.find(lp);
|
|
|
|
if (it == refCounter.end())
|
|
|
|
refCounter[lp] = 1;
|
|
|
|
else
|
|
|
|
it->second += 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void addReferences(const std::vector<LayerPin>& pins)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < pins.size(); i++)
|
|
|
|
{
|
|
|
|
addReference(pins[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns number of references to allocated memory that used in specific
|
|
|
|
// layer blob.
|
|
|
|
int numReferences(const LayerPin& lp)
|
|
|
|
{
|
|
|
|
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
|
|
|
|
CV_Assert(mapIt != reuseMap.end());
|
|
|
|
LayerPin memHost = mapIt->second;
|
|
|
|
|
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(memHost);
|
|
|
|
CV_Assert(refIt != refCounter.end());
|
|
|
|
return refIt->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reuse data allocated in <host> inside the <user> blob.
|
|
|
|
void reuse(const LayerPin& host, const LayerPin& user)
|
|
|
|
{
|
|
|
|
CV_Assert(reuseMap.find(user) == reuseMap.end());
|
|
|
|
CV_Assert(reuseMap.find(host) != reuseMap.end());
|
|
|
|
LayerPin memHost = reuseMap[host];
|
|
|
|
reuseMap[user] = memHost;
|
|
|
|
if (refCounter.find(memHost) != refCounter.end())
|
|
|
|
{
|
|
|
|
std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
|
|
|
|
if (userRefIt != refCounter.end())
|
|
|
|
{
|
|
|
|
refCounter[memHost] += userRefIt->second;
|
|
|
|
refCounter.erase(userRefIt);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
refCounter[memHost] += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Decrease references counter to allocated memory inside specific blob.
|
|
|
|
void releaseReference(const LayerPin& lp)
|
|
|
|
{
|
|
|
|
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
|
|
|
|
CV_Assert(mapIt != reuseMap.end());
|
|
|
|
|
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
|
|
|
|
CV_Assert(refIt != refCounter.end());
|
|
|
|
CV_Assert(refIt->second > 0);
|
|
|
|
refIt->second -= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void releaseReferences(const std::vector<LayerPin>& pins)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < pins.size(); i++)
|
|
|
|
{
|
|
|
|
releaseReference(pins[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool force)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
Mat bestBlob;
|
|
|
|
LayerPin bestBlobPin;
|
2017-07-04 22:23:47 +08:00
|
|
|
|
|
|
|
if( !force )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
std::map<LayerPin, Mat>::iterator hostIt;
|
|
|
|
std::map<LayerPin, int>::iterator refIt;
|
|
|
|
|
|
|
|
const int targetTotal = total(shape);
|
|
|
|
int bestBlobTotal = INT_MAX;
|
|
|
|
|
|
|
|
for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
refIt = refCounter.find(hostIt->first);
|
|
|
|
// Use only blobs that had references before because if not,
|
|
|
|
// it might be used as output.
|
|
|
|
if (refIt != refCounter.end() && refIt->second == 0)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
Mat& unusedBlob = hostIt->second;
|
|
|
|
if (unusedBlob.total() >= targetTotal &&
|
|
|
|
unusedBlob.total() < bestBlobTotal)
|
|
|
|
{
|
|
|
|
bestBlobPin = hostIt->first;
|
|
|
|
bestBlob = unusedBlob;
|
|
|
|
bestBlobTotal = unusedBlob.total();
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!bestBlob.empty())
|
|
|
|
{
|
|
|
|
reuse(bestBlobPin, lp);
|
|
|
|
dst = Mat(shape, CV_32F, bestBlob.data);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// if dst already has been allocated with total(shape) elements,
|
|
|
|
// it won't be recrreated and pointer of dst.data remains the same.
|
|
|
|
dst.create(shape, CV_32F);
|
|
|
|
addHost(lp, dst);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, UMat &umat_dst, bool force)
|
|
|
|
{
|
|
|
|
UMat bestBlob;
|
|
|
|
LayerPin bestBlobPin;
|
|
|
|
|
|
|
|
if( !force )
|
|
|
|
{
|
|
|
|
std::map<LayerPin, UMat>::iterator hostIt;
|
|
|
|
std::map<LayerPin, int>::iterator refIt;
|
|
|
|
|
|
|
|
const int targetTotal = total(shape);
|
|
|
|
int bestBlobTotal = INT_MAX;
|
|
|
|
|
|
|
|
for (hostIt = umat_memHosts.begin(); hostIt != umat_memHosts.end(); ++hostIt)
|
|
|
|
{
|
|
|
|
refIt = refCounter.find(hostIt->first);
|
|
|
|
// Use only blobs that had references before because if not,
|
|
|
|
// it might be used as output.
|
|
|
|
if (refIt != refCounter.end() && refIt->second == 0)
|
|
|
|
{
|
|
|
|
UMat& unusedBlob = hostIt->second;
|
|
|
|
if (unusedBlob.total() >= targetTotal &&
|
|
|
|
unusedBlob.total() < bestBlobTotal)
|
|
|
|
{
|
|
|
|
bestBlobPin = hostIt->first;
|
|
|
|
bestBlob = unusedBlob;
|
|
|
|
bestBlobTotal = unusedBlob.total();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!bestBlob.empty())
|
|
|
|
{
|
|
|
|
reuse(bestBlobPin, lp);
|
|
|
|
umat_dst.create(shape, CV_32F);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// if dst already has been allocated with total(shape) elements,
|
|
|
|
// it won't be recrreated and pointer of dst.data remains the same.
|
|
|
|
umat_dst.create(shape, CV_32F);
|
|
|
|
addHost(lp, umat_dst);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes,
|
2017-07-04 22:23:47 +08:00
|
|
|
std::vector<LayerPin>& pinsForInternalBlobs,
|
|
|
|
bool maximizeReuse)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
2017-11-09 12:57:37 +08:00
|
|
|
bool use_umat = (preferableBackend == DNN_BACKEND_DEFAULT &&
|
|
|
|
preferableTarget == DNN_TARGET_OPENCL);
|
2017-06-28 19:46:58 +08:00
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
pinsForInternalBlobs.clear();
|
|
|
|
|
|
|
|
std::vector<Mat>& outputBlobs = ld.outputBlobs,
|
|
|
|
&internalBlobs = ld.internals;
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
std::vector<UMat>& umat_outputBlobs = ld.umat_outputBlobs,
|
|
|
|
&umat_internalBlobs = ld.umat_internals;
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
const ShapesVec& outShapes = layerShapes.out,
|
|
|
|
internalShapes = layerShapes.internal;
|
|
|
|
|
|
|
|
outputBlobs.resize(std::max((size_t)1, outShapes.size())); //layer produce at least one output blob
|
|
|
|
internalBlobs.resize(internalShapes.size());
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
{
|
|
|
|
umat_outputBlobs.resize(std::max((size_t)1, outShapes.size()));
|
|
|
|
umat_internalBlobs.resize(internalShapes.size());
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
CV_Assert(ld.requiredOutputs.size() <= outShapes.size());
|
|
|
|
|
|
|
|
// Check that layer could work in-place.
|
|
|
|
bool inPlace = false;
|
|
|
|
if (layerShapes.supportInPlace)
|
|
|
|
{
|
|
|
|
if (ld.inputBlobs.size() == 1)
|
|
|
|
{
|
|
|
|
// Get number of references to the input memory.
|
|
|
|
int numRef = numReferences(ld.inputBlobsId[0]);
|
|
|
|
// If current layer is one and only customer of this blob.
|
|
|
|
inPlace = numRef == 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ShapesVec shapes(outShapes);
|
|
|
|
shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
|
|
|
|
std::vector<Mat*> blobs;
|
2017-11-09 12:57:37 +08:00
|
|
|
std::vector<UMat*> umat_blobs;
|
2017-06-26 18:35:51 +08:00
|
|
|
for(int i = 0; i < outputBlobs.size(); i++)
|
|
|
|
{
|
|
|
|
blobs.push_back(&outputBlobs[i]);
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
umat_blobs.push_back(&umat_outputBlobs[i]);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
for(int i = 0; i < internalBlobs.size(); i++)
|
|
|
|
{
|
|
|
|
blobs.push_back(&internalBlobs[i]);
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
umat_blobs.push_back(&umat_internalBlobs[i]);
|
2017-06-26 18:35:51 +08:00
|
|
|
if (total(internalShapes[i]))
|
|
|
|
{
|
|
|
|
pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
addReferences(pinsForInternalBlobs);
|
|
|
|
|
|
|
|
std::map<int, std::vector<int> > idxSizes;
|
|
|
|
for(int i = 0; i < shapes.size(); i++)
|
|
|
|
{
|
|
|
|
idxSizes[total(shapes[i])].push_back(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::map<int, std::vector<int> >::reverse_iterator it;
|
2017-07-04 22:23:47 +08:00
|
|
|
bool force = !maximizeReuse && ld.inputBlobsId.size() > 1;
|
2017-06-26 18:35:51 +08:00
|
|
|
for(it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
|
|
|
|
{
|
|
|
|
for(int j = 0; j < it->second.size(); j++)
|
|
|
|
{
|
|
|
|
int index = it->second[j];
|
|
|
|
if (total(shapes[index]))
|
|
|
|
{
|
|
|
|
LayerPin blobPin(ld.id, index);
|
2017-07-04 22:23:47 +08:00
|
|
|
if (index < outShapes.size() && inPlace && !force)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
{
|
|
|
|
CV_Assert(ld.umat_inputBlobs[0].total() == total(shapes[index]));
|
|
|
|
ld.umat_outputBlobs[index] =
|
|
|
|
ld.umat_inputBlobs[0].reshape(1, shapes[index].size(),
|
|
|
|
&shapes[index][0]);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
|
|
|
|
ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
reuse(ld.inputBlobsId[0], blobPin);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
reuseOrCreate(shapes[index], blobPin, *umat_blobs[index], force);
|
|
|
|
else
|
|
|
|
reuseOrCreate(shapes[index], blobPin, *blobs[index], force);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Clear internal state. Calls before an every reallocation.
|
|
|
|
void reset()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
refCounter.clear();
|
|
|
|
reuseMap.clear();
|
|
|
|
memHosts.clear();
|
2017-11-09 12:57:37 +08:00
|
|
|
umat_memHosts.clear();
|
|
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
|
|
preferableBackend = DNN_BACKEND_DEFAULT;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setPreferableTarget(int targetId)
|
|
|
|
{
|
|
|
|
preferableTarget = targetId;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setPreferableBackend(int backendId)
|
|
|
|
{
|
|
|
|
preferableBackend = backendId;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Register allocated memory.
|
|
|
|
void addHost(const LayerPin& lp, const Mat& mat)
|
|
|
|
{
|
|
|
|
CV_Assert(memHosts.find(lp) == memHosts.end());
|
|
|
|
reuseMap[lp] = lp;
|
|
|
|
memHosts[lp] = mat;
|
|
|
|
}
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void addHost(const LayerPin& lp, const UMat& umat)
|
|
|
|
{
|
|
|
|
CV_Assert(umat_memHosts.find(lp) == umat_memHosts.end());
|
|
|
|
reuseMap[lp] = lp;
|
|
|
|
umat_memHosts[lp] = umat;
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::map<LayerPin, int> refCounter;
|
|
|
|
// Maps pin to origin blob (for whom memory was allocated firstly).
|
|
|
|
// For origin blobs key == value.
|
|
|
|
std::map<LayerPin, LayerPin> reuseMap;
|
|
|
|
std::map<LayerPin, Mat> memHosts;
|
2017-11-09 12:57:37 +08:00
|
|
|
std::map<LayerPin, UMat> umat_memHosts;
|
|
|
|
int preferableTarget;
|
|
|
|
int preferableBackend;
|
2017-06-26 18:35:51 +08:00
|
|
|
};
|
|
|
|
|
2017-09-06 15:34:07 +08:00
|
|
|
static Ptr<BackendWrapper> wrapMat(int backendId, int targetId, const cv::Mat& m)
|
|
|
|
{
|
|
|
|
if (backendId == DNN_BACKEND_DEFAULT)
|
|
|
|
{
|
|
|
|
return Ptr<BackendWrapper>();
|
|
|
|
}
|
|
|
|
else if (backendId == DNN_BACKEND_HALIDE)
|
|
|
|
{
|
|
|
|
CV_Assert(haveHalide());
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m));
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
|
|
return Ptr<BackendWrapper>();
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
struct Net::Impl
|
|
|
|
{
|
|
|
|
typedef std::map<int, LayerShapes> LayersShapesMap;
|
|
|
|
typedef std::map<int, LayerData> MapIdToLayerData;
|
|
|
|
|
|
|
|
Impl()
|
|
|
|
{
|
|
|
|
//allocate fake net input layer
|
|
|
|
netInputLayer = Ptr<DataLayer>(new DataLayer());
|
|
|
|
LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second;
|
|
|
|
inpl.id = 0;
|
|
|
|
inpl.name = "_input";
|
|
|
|
inpl.type = "__NetInputLayer__";
|
|
|
|
inpl.layerInstance = netInputLayer;
|
|
|
|
layerNameToId.insert(std::make_pair(inpl.name, inpl.id));
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
lastLayerId = 0;
|
2017-06-26 18:35:51 +08:00
|
|
|
netWasAllocated = false;
|
2017-07-04 22:23:47 +08:00
|
|
|
fusion = true;
|
2017-06-26 18:35:51 +08:00
|
|
|
preferableBackend = DNN_BACKEND_DEFAULT;
|
|
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<DataLayer> netInputLayer;
|
|
|
|
std::vector<int> netOutputs;
|
|
|
|
std::vector<LayerPin> blobsToKeep;
|
|
|
|
MapIdToLayerData layers;
|
|
|
|
std::map<String, int> layerNameToId;
|
|
|
|
BlobManager blobManager;
|
|
|
|
int preferableBackend;
|
|
|
|
int preferableTarget;
|
|
|
|
String halideConfigFile;
|
2017-09-06 15:34:07 +08:00
|
|
|
// Map host data to backend specific wrapper.
|
|
|
|
std::map<void*, Ptr<BackendWrapper> > backendWrappers;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
int lastLayerId;
|
|
|
|
|
|
|
|
bool netWasAllocated;
|
2017-07-04 22:23:47 +08:00
|
|
|
bool fusion;
|
2017-08-02 22:27:58 +08:00
|
|
|
std::vector<int64> layersTimings;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-09-06 15:34:07 +08:00
|
|
|
Ptr<BackendWrapper> wrap(const Mat& host)
|
|
|
|
{
|
|
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT)
|
|
|
|
return Ptr<BackendWrapper>();
|
|
|
|
|
|
|
|
MatShape shape(host.dims);
|
|
|
|
for (int i = 0; i < host.dims; ++i)
|
|
|
|
shape[i] = host.size[i];
|
|
|
|
|
|
|
|
void* data = host.data;
|
|
|
|
if (backendWrappers.find(data) != backendWrappers.end())
|
|
|
|
{
|
|
|
|
Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
|
|
|
|
if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
|
|
{
|
|
|
|
CV_Assert(haveHalide());
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
|
|
|
|
backendWrappers[data] = wrapper;
|
|
|
|
return wrapper;
|
|
|
|
}
|
|
|
|
|
2017-10-10 22:52:55 +08:00
|
|
|
#ifdef HAVE_HALIDE
|
2017-06-26 18:35:51 +08:00
|
|
|
void compileHalide()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);
|
|
|
|
|
|
|
|
HalideScheduler scheduler(halideConfigFile);
|
2017-10-10 22:52:55 +08:00
|
|
|
std::vector< std::reference_wrapper<LayerData> > compileList; compileList.reserve(64);
|
|
|
|
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
LayerData &ld = it->second;
|
|
|
|
Ptr<Layer> layer = ld.layerInstance;
|
|
|
|
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skipFlags[DNN_BACKEND_HALIDE])
|
|
|
|
{
|
|
|
|
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
|
|
|
|
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
|
|
|
|
if (!scheduled)
|
|
|
|
{
|
|
|
|
// Use automatic scheduling provided by layer.
|
|
|
|
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
|
|
|
|
ld.inputBlobs, ld.outputBlobs,
|
|
|
|
preferableTarget);
|
|
|
|
}
|
2017-10-10 22:52:55 +08:00
|
|
|
compileList.emplace_back(ld);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
2017-10-10 22:52:55 +08:00
|
|
|
std::atomic<int> progress(0);
|
|
|
|
auto fn = ([&] () -> void
|
|
|
|
{
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
int id = progress.fetch_add(1);
|
|
|
|
if ((size_t)id >= compileList.size())
|
|
|
|
return;
|
|
|
|
const LayerData& ld = compileList[id].get();
|
|
|
|
Ptr<BackendNode> node = ld.backendNodes.find(DNN_BACKEND_HALIDE)->second;
|
|
|
|
dnn::compileHalide(ld.outputBlobs, node, preferableTarget);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
size_t num_threads = std::min(compileList.size(), (size_t)std::thread::hardware_concurrency());
|
|
|
|
num_threads = std::max((size_t)1u, std::min((size_t)8u, num_threads));
|
|
|
|
std::vector<std::thread> threads(num_threads - 1);
|
|
|
|
for (auto& t: threads) t = std::thread(fn);
|
|
|
|
fn(); // process own tasks
|
|
|
|
for (auto& t: threads) t.join();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
2017-10-10 22:52:55 +08:00
|
|
|
#endif
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
void clear()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
MapIdToLayerData::iterator it;
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
if (it->second.id != 0) {
|
2017-06-29 21:45:17 +08:00
|
|
|
it->second.inputBlobs.clear();
|
2017-06-26 18:35:51 +08:00
|
|
|
it->second.outputBlobs.clear();
|
|
|
|
it->second.internals.clear();
|
2017-11-09 12:57:37 +08:00
|
|
|
it->second.umat_inputBlobs.clear();
|
|
|
|
it->second.umat_outputBlobs.clear();
|
|
|
|
it->second.umat_internals.clear();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
it->second.skipFlags.clear();
|
2017-06-28 16:15:22 +08:00
|
|
|
//it->second.consumers.clear();
|
|
|
|
Ptr<Layer> currLayer = it->second.layerInstance;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-06-28 16:15:22 +08:00
|
|
|
if( currLayer.empty() )
|
|
|
|
continue;
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
currLayer->unsetAttached();
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-06-28 16:15:22 +08:00
|
|
|
Ptr<PoolingLayer> poolingLayer = currLayer.dynamicCast<PoolingLayer>();
|
2017-06-26 18:35:51 +08:00
|
|
|
if( !poolingLayer.empty() )
|
|
|
|
{
|
|
|
|
poolingLayer->computeMaxIdx = true;
|
|
|
|
}
|
|
|
|
}
|
2017-07-04 22:23:47 +08:00
|
|
|
it = layers.find(0);
|
|
|
|
CV_Assert(it != layers.end());
|
|
|
|
it->second.skipFlags[DNN_BACKEND_DEFAULT] = true;
|
2017-08-02 22:27:58 +08:00
|
|
|
|
|
|
|
layersTimings.clear();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>())
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
|
|
|
|
allocateLayers(blobsToKeep_);
|
|
|
|
computeNetOutputLayers();
|
|
|
|
initBackend();
|
|
|
|
|
|
|
|
if (!netWasAllocated )
|
|
|
|
{
|
2017-10-10 22:52:55 +08:00
|
|
|
#ifdef HAVE_HALIDE
|
2017-06-26 18:35:51 +08:00
|
|
|
if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
|
|
compileHalide();
|
2017-10-10 22:52:55 +08:00
|
|
|
#else
|
|
|
|
CV_Assert(preferableBackend != DNN_BACKEND_HALIDE);
|
|
|
|
#endif
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
netWasAllocated = true;
|
|
|
|
this->blobsToKeep = blobsToKeep_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int getLayerId(const String &layerName)
|
|
|
|
{
|
|
|
|
std::map<String, int>::iterator it = layerNameToId.find(layerName);
|
|
|
|
return (it != layerNameToId.end()) ? it->second : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int getLayerId(int id)
|
|
|
|
{
|
|
|
|
MapIdToLayerData::iterator it = layers.find(id);
|
|
|
|
return (it != layers.end()) ? id : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int getLayerId(DictValue &layerDesc)
|
|
|
|
{
|
|
|
|
if (layerDesc.isInt())
|
|
|
|
return getLayerId(layerDesc.get<int>());
|
|
|
|
else if (layerDesc.isString())
|
|
|
|
return getLayerId(layerDesc.get<String>());
|
|
|
|
|
|
|
|
CV_Assert(layerDesc.isInt() || layerDesc.isString());
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
String getLayerName(int id)
|
|
|
|
{
|
|
|
|
MapIdToLayerData::iterator it = layers.find(id);
|
|
|
|
return (it != layers.end()) ? it->second.name : "(unknown layer)";
|
|
|
|
}
|
|
|
|
|
|
|
|
LayerData& getLayerData(int id)
|
|
|
|
{
|
|
|
|
MapIdToLayerData::iterator it = layers.find(id);
|
|
|
|
|
|
|
|
if (it == layers.end())
|
|
|
|
CV_Error(Error::StsObjectNotFound, format("Layer with requested id=%d not found", id));
|
|
|
|
|
|
|
|
return it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
LayerData& getLayerData(const String &layerName)
|
|
|
|
{
|
|
|
|
int id = getLayerId(layerName);
|
|
|
|
|
|
|
|
if (id < 0)
|
|
|
|
CV_Error(Error::StsError, "Requsted layer \"" + layerName + "\" not found");
|
|
|
|
|
|
|
|
return getLayerData(id);
|
|
|
|
}
|
|
|
|
|
|
|
|
LayerData& getLayerData(const DictValue &layerDesc)
|
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
CV_Assert(layerDesc.isInt() || layerDesc.isString());
|
2017-06-26 18:35:51 +08:00
|
|
|
if (layerDesc.isInt())
|
|
|
|
return getLayerData(layerDesc.get<int>());
|
2017-07-04 22:23:47 +08:00
|
|
|
else /*if (layerDesc.isString())*/
|
2017-06-26 18:35:51 +08:00
|
|
|
return getLayerData(layerDesc.get<String>());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void addLayerInput(LayerData &ld, int inNum, LayerPin from)
|
|
|
|
{
|
|
|
|
if ((int)ld.inputBlobsId.size() <= inNum)
|
|
|
|
{
|
|
|
|
ld.inputBlobsId.resize(inNum + 1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
LayerPin storedFrom = ld.inputBlobsId[inNum];
|
|
|
|
if (storedFrom.valid() && !storedFrom.equal(from))
|
|
|
|
CV_Error(Error::StsError, "Input #" + toString(inNum) + "of layer \"" + ld.name + "\" already was connected");
|
|
|
|
}
|
|
|
|
|
|
|
|
ld.inputBlobsId[inNum] = from;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void splitPin(const String &pinAlias, String &layerName, String &outName)
|
|
|
|
{
|
|
|
|
size_t delimPos = pinAlias.find('.');
|
|
|
|
layerName = pinAlias.substr(0, delimPos);
|
|
|
|
outName = (delimPos == String::npos) ? String() : pinAlias.substr(delimPos + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
int resolvePinOutputName(LayerData &ld, const String &outName)
|
|
|
|
{
|
|
|
|
if (outName.empty())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (std::isdigit(outName[0]))
|
|
|
|
{
|
|
|
|
char *lastChar;
|
|
|
|
long inum = std::strtol(outName.c_str(), &lastChar, 10);
|
|
|
|
|
|
|
|
if (*lastChar == 0)
|
|
|
|
{
|
|
|
|
CV_Assert(inum == (int)inum);
|
|
|
|
return (int)inum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ld.getLayerInstance()->outputNameToIndex(outName);
|
|
|
|
}
|
|
|
|
|
|
|
|
LayerPin getPinByAlias(const String &pinAlias)
|
|
|
|
{
|
|
|
|
LayerPin pin;
|
|
|
|
String layerName, outName;
|
|
|
|
splitPin(pinAlias, layerName, outName);
|
|
|
|
|
|
|
|
pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);
|
|
|
|
|
|
|
|
if (pin.lid >= 0)
|
|
|
|
pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName);
|
|
|
|
|
|
|
|
return pin;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<LayerPin> getLayerOutPins(const String &pinAlias)
|
|
|
|
{
|
|
|
|
String layerName, outName;
|
|
|
|
splitPin(pinAlias, layerName, outName);
|
|
|
|
|
|
|
|
int lid = (layerName.empty()) ? 0 : getLayerId(layerName);
|
|
|
|
|
|
|
|
std::vector<LayerPin> pins;
|
|
|
|
|
|
|
|
for (int i = 0; i < layers[lid].outputBlobs.size(); i++)
|
|
|
|
{
|
|
|
|
pins.push_back(LayerPin(lid, i));
|
|
|
|
}
|
|
|
|
|
|
|
|
return pins;
|
|
|
|
}
|
|
|
|
|
|
|
|
void connect(int outLayerId, int outNum, int inLayerId, int inNum)
|
|
|
|
{
|
|
|
|
CV_Assert(outLayerId < inLayerId);
|
|
|
|
LayerData &ldOut = getLayerData(outLayerId);
|
|
|
|
LayerData &ldInp = getLayerData(inLayerId);
|
|
|
|
|
|
|
|
addLayerInput(ldInp, inNum, LayerPin(outLayerId, outNum));
|
|
|
|
ldOut.requiredOutputs.insert(outNum);
|
|
|
|
ldOut.consumers.push_back(LayerPin(inLayerId, outNum));
|
|
|
|
}
|
|
|
|
|
|
|
|
void computeNetOutputLayers()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
netOutputs.clear();
|
|
|
|
|
|
|
|
MapIdToLayerData::iterator it;
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
int lid = it->first;
|
|
|
|
LayerData &ld = it->second;
|
|
|
|
|
|
|
|
if (ld.requiredOutputs.size() == 0)
|
|
|
|
netOutputs.push_back(lid);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
std::cout << "\nNet Outputs(" << netOutputs.size() << "):\n";
|
|
|
|
for (size_t i = 0; i < netOutputs.size(); i++)
|
|
|
|
std::cout << layers[netOutputs[i]].name << "\n";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void initBackend()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT)
|
|
|
|
{
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
CV_Assert(preferableTarget == DNN_TARGET_CPU || preferableTarget == DNN_TARGET_OPENCL);
|
2017-06-26 18:35:51 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterator to current layer.
|
|
|
|
MapIdToLayerData::iterator it = layers.begin();
|
|
|
|
// Iterator to base layer for fusion. In example, in case of conv+bn+relu
|
|
|
|
// it'll be a conv layer.
|
|
|
|
MapIdToLayerData::iterator baseIt = layers.begin();
|
|
|
|
for (; it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
LayerData &ldTop = it->second;
|
|
|
|
Ptr<Layer> layerTop = ldTop.layerInstance;
|
|
|
|
if (!layerTop->supportBackend(preferableBackend))
|
|
|
|
{
|
|
|
|
// Move base iterator to layer that don't support preferable
|
|
|
|
// backend to prevent fusion over layer of different backend.
|
|
|
|
baseIt = it;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// Try to do layers fusion.
|
|
|
|
LayerData &ldBot = baseIt->second;
|
|
|
|
Ptr<Layer> layerBot = ldBot.layerInstance;
|
|
|
|
// 1. Check that bottom and top from the same backends.
|
|
|
|
if (it != layers.begin() && layerBot->supportBackend(preferableBackend))
|
|
|
|
{
|
|
|
|
// 2. Check that current layer works in-place.
|
|
|
|
bool inPlace = ldTop.inputBlobs.size() == 1 &&
|
|
|
|
ldBot.outputBlobs.size() == 1 &&
|
|
|
|
ldTop.inputBlobs[0]->data ==
|
|
|
|
ldBot.outputBlobs[0].data;
|
|
|
|
if (inPlace)
|
|
|
|
{
|
|
|
|
// 3. Try to attach node.
|
|
|
|
CV_Assert(!ldBot.backendNodes[preferableBackend].empty());
|
|
|
|
Ptr<BackendNode> fusedNode =
|
|
|
|
layerTop->tryAttach(ldBot.backendNodes[preferableBackend]);
|
|
|
|
if (!fusedNode.empty())
|
|
|
|
{
|
|
|
|
ldTop.skipFlags[preferableBackend] = true;
|
|
|
|
ldBot.backendNodes[preferableBackend] = fusedNode;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// No layers fusion.
|
|
|
|
ldTop.skipFlags[preferableBackend] = false;
|
|
|
|
if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
|
|
{
|
2017-09-06 15:34:07 +08:00
|
|
|
ldTop.backendNodes[DNN_BACKEND_HALIDE] =
|
|
|
|
layerTop->initHalide(ldTop.inputBlobsWrappers);
|
2017-06-26 18:35:51 +08:00
|
|
|
baseIt = it;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void allocateLayer(int lid, const LayersShapesMap& layersShapes)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
LayerData &ld = layers[lid];
|
|
|
|
|
|
|
|
//already allocated
|
|
|
|
if (ld.flag)
|
|
|
|
return;
|
|
|
|
|
|
|
|
size_t ninputs = ld.inputBlobsId.size();
|
|
|
|
#if 0
|
|
|
|
printf("layer %s:", ld.name.c_str());
|
|
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
|
|
{
|
|
|
|
int inp_lid = ld.inputBlobsId[i].lid;
|
|
|
|
LayerData &inp_ld = layers[inp_lid];
|
|
|
|
int inp_outputs = (int)inp_ld.outputBlobs.size();
|
|
|
|
std::cout << " " << inp_ld.name << "(" << inp_outputs;
|
|
|
|
|
|
|
|
for( int j = 0; j < inp_outputs; j++ )
|
|
|
|
{
|
|
|
|
std::cout << (j == 0 ? ": " : ", ") << inp_ld.outputBlobs[j].size;
|
|
|
|
}
|
|
|
|
std::cout << ")";
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//determine parent layers
|
|
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
|
|
ld.inputLayersId.insert(ld.inputBlobsId[i].lid);
|
|
|
|
|
|
|
|
//allocate parents
|
|
|
|
for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++)
|
|
|
|
allocateLayer(*i, layersShapes);
|
|
|
|
|
|
|
|
//bind inputs
|
2017-11-09 12:57:37 +08:00
|
|
|
bool use_umat = (preferableBackend == DNN_BACKEND_DEFAULT &&
|
|
|
|
preferableTarget == DNN_TARGET_OPENCL);
|
2017-06-26 18:35:51 +08:00
|
|
|
ld.inputBlobs.resize(ninputs);
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
ld.umat_inputBlobs.resize(ninputs);
|
2017-09-06 15:34:07 +08:00
|
|
|
ld.inputBlobsWrappers.resize(ninputs);
|
2017-06-26 18:35:51 +08:00
|
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
|
|
{
|
|
|
|
LayerPin from = ld.inputBlobsId[i];
|
|
|
|
CV_Assert(from.valid());
|
|
|
|
CV_DbgAssert(layers.count(from.lid) && (int)layers[from.lid].outputBlobs.size() > from.oid);
|
|
|
|
ld.inputBlobs[i] = &layers[from.lid].outputBlobs[from.oid];
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
ld.umat_inputBlobs[i] = layers[from.lid].umat_outputBlobs[from.oid];
|
2017-09-06 15:34:07 +08:00
|
|
|
ld.inputBlobsWrappers[i] = layers[from.lid].outputBlobsWrappers[from.oid];
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
LayersShapesMap::const_iterator layerShapesIt = layersShapes.find(lid);
|
|
|
|
|
|
|
|
CV_Assert(layerShapesIt != layersShapes.end());
|
|
|
|
|
|
|
|
std::vector<LayerPin> pinsForInternalBlobs;
|
2017-07-04 22:23:47 +08:00
|
|
|
bool maximizeReuse = preferableBackend == DNN_BACKEND_HALIDE;
|
|
|
|
blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs, maximizeReuse);
|
2017-09-06 15:34:07 +08:00
|
|
|
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
|
|
|
|
for (int i = 0; i < ld.outputBlobs.size(); ++i)
|
|
|
|
{
|
|
|
|
ld.outputBlobsWrappers[i] = wrap(ld.outputBlobs[i]);
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Ptr<Layer> layerPtr = ld.getLayerInstance();
|
|
|
|
{
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
{
|
|
|
|
std::vector<Mat*> inputs(ld.umat_inputBlobs.size());;
|
|
|
|
std::vector<Mat> outputs(ld.umat_outputBlobs.size());
|
|
|
|
Mat mat;
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
mat = ld.umat_inputBlobs[i].getMat(ACCESS_READ);
|
|
|
|
inputs[i] = &mat;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < outputs.size(); i++)
|
|
|
|
{
|
|
|
|
outputs[i] = ld.umat_outputBlobs[i].getMat(ACCESS_READ);
|
|
|
|
}
|
|
|
|
layerPtr->finalize(inputs, outputs);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
layerPtr->finalize(ld.inputBlobs, ld.outputBlobs);
|
|
|
|
}
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
layerPtr->preferableTarget = preferableTarget;
|
2017-06-26 18:35:51 +08:00
|
|
|
#if 0
|
|
|
|
std::cout << "\toutputs:";
|
|
|
|
size_t noutputs = ld.outputBlobs.size();
|
|
|
|
for (size_t j = 0; j < noutputs; j++)
|
|
|
|
{
|
|
|
|
std::cout << (j == 0 ? " " : ", ") << ld.outputBlobs[j].size;
|
|
|
|
}
|
|
|
|
std::cout << "\n";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// After allocation of layer, we decrease counters to it's input blobs.
|
|
|
|
blobManager.releaseReferences(ld.inputBlobsId);
|
|
|
|
blobManager.releaseReferences(pinsForInternalBlobs);
|
|
|
|
|
|
|
|
ld.flag = 1;
|
|
|
|
}
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
#if 0
|
|
|
|
#define printf_(args) printf args
|
|
|
|
#else
|
|
|
|
#define printf_(args)
|
|
|
|
#endif
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
|
|
|
|
{
|
2017-08-29 15:48:19 +08:00
|
|
|
if( !fusion || preferableBackend != DNN_BACKEND_DEFAULT)
|
2017-07-04 22:23:47 +08:00
|
|
|
return;
|
|
|
|
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
// scan through all the layers. If there is convolution layer followed by the activation layer,
|
|
|
|
// we try to embed this activation into the convolution and disable separate execution of the activation
|
|
|
|
std::vector<String> outnames;
|
|
|
|
std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
|
|
|
|
blobsToKeep_.end());
|
|
|
|
MapIdToLayerData::iterator it;
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
int lid = it->first;
|
|
|
|
LayerData& ld = layers[lid];
|
|
|
|
if( ld.skipFlags[DNN_BACKEND_DEFAULT] )
|
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
|
2017-06-26 18:35:51 +08:00
|
|
|
continue;
|
|
|
|
}
|
2017-07-04 22:23:47 +08:00
|
|
|
printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
|
2017-06-26 18:35:51 +08:00
|
|
|
if( ld.consumers.size() == 0 )
|
|
|
|
outnames.push_back(ld.layerInstance->name);
|
2017-06-28 16:15:22 +08:00
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
// the optimization #1. try to fuse batch norm, scaling and/or activation layers
|
|
|
|
// with the current layer if they follow it. Normally, the are fused with the convolution layer,
|
|
|
|
// but some of them (like activation) may be fused with fully-connected, elemwise (+) and
|
|
|
|
// some other layers.
|
2017-08-29 15:48:19 +08:00
|
|
|
|
|
|
|
// TODO: OpenCL target support more fusion styles.
|
2017-11-27 12:57:36 +08:00
|
|
|
if ( preferableTarget == DNN_TARGET_OPENCL &&
|
|
|
|
(!cv::ocl::useOpenCL() || ld.layerInstance->type.compare("Convolution")) )
|
2017-08-29 15:48:19 +08:00
|
|
|
continue;
|
|
|
|
|
2017-06-28 16:15:22 +08:00
|
|
|
Ptr<Layer>& currLayer = ld.layerInstance;
|
|
|
|
if( ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0 )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
LayerData* nextData = &layers[ld.consumers[0].lid];
|
|
|
|
Ptr<BatchNormLayer> nextBNormLayer =
|
|
|
|
nextData->layerInstance.dynamicCast<BatchNormLayer>();
|
|
|
|
LayerPin lpNext(ld.consumers[0].lid, 0);
|
|
|
|
if( !nextBNormLayer.empty() && pinsToKeep.count(lpNext) == 0 )
|
|
|
|
{
|
|
|
|
LayerData* bnormData = nextData;
|
|
|
|
nextData = 0;
|
2017-06-28 16:15:22 +08:00
|
|
|
if( currLayer->setBatchNorm(nextBNormLayer) )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
printf_(("\tfused with %s\n", nextBNormLayer->name.c_str()));
|
2017-06-26 18:35:51 +08:00
|
|
|
bnormData->skipFlags[DNN_BACKEND_DEFAULT] = true;
|
2017-11-27 12:57:36 +08:00
|
|
|
if ( preferableTarget == DNN_TARGET_OPENCL )
|
|
|
|
ld.umat_outputBlobs = layers[lpNext.lid].umat_outputBlobs;
|
|
|
|
else
|
|
|
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
|
2017-06-26 18:35:51 +08:00
|
|
|
if( bnormData->consumers.size() == 1 )
|
2017-06-29 21:45:17 +08:00
|
|
|
{
|
2017-06-26 18:35:51 +08:00
|
|
|
nextData = &layers[bnormData->consumers[0].lid];
|
2017-06-29 21:45:17 +08:00
|
|
|
lpNext = LayerPin(bnormData->consumers[0].lid, 0);
|
|
|
|
}
|
2017-07-04 22:23:47 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<ScaleLayer> nextScaleLayer;
|
|
|
|
if( nextData )
|
|
|
|
nextScaleLayer = nextData->layerInstance.dynamicCast<ScaleLayer>();
|
|
|
|
if( !nextScaleLayer.empty() && pinsToKeep.count(lpNext) == 0 )
|
|
|
|
{
|
|
|
|
LayerData* scaleData = nextData;
|
|
|
|
nextData = 0;
|
|
|
|
if( currLayer->setScale(nextScaleLayer) )
|
|
|
|
{
|
|
|
|
printf_(("\tfused with %s\n", nextScaleLayer->name.c_str()));
|
|
|
|
scaleData->skipFlags[DNN_BACKEND_DEFAULT] = true;
|
2017-11-27 12:57:36 +08:00
|
|
|
if ( preferableTarget == DNN_TARGET_OPENCL )
|
|
|
|
ld.umat_outputBlobs = layers[lpNext.lid].umat_outputBlobs;
|
|
|
|
else
|
|
|
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
|
2017-07-04 22:23:47 +08:00
|
|
|
if( scaleData->consumers.size() == 1 )
|
2017-06-29 21:45:17 +08:00
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
nextData = &layers[scaleData->consumers[0].lid];
|
2017-06-29 21:45:17 +08:00
|
|
|
lpNext = LayerPin(scaleData->consumers[0].lid, 0);
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-20 11:29:18 +08:00
|
|
|
// For now, OpenCL target only support fusion with activation of ReLU/ChannelsPReLU/Power
|
2017-08-29 15:48:19 +08:00
|
|
|
if ( preferableTarget != DNN_TARGET_OPENCL ||
|
|
|
|
(preferableTarget == DNN_TARGET_OPENCL &&
|
|
|
|
nextData &&
|
|
|
|
(!nextData->type.compare("ReLU") ||
|
2017-11-20 11:29:18 +08:00
|
|
|
!nextData->type.compare("ChannelsPReLU") ||
|
|
|
|
!nextData->type.compare("Power"))) )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-08-29 15:48:19 +08:00
|
|
|
|
|
|
|
Ptr<ActivationLayer> nextActivLayer;
|
|
|
|
|
|
|
|
if( nextData )
|
|
|
|
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
|
|
|
|
|
|
|
|
if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0
|
|
|
|
&& currLayer->setActivation(nextActivLayer) )
|
|
|
|
{
|
|
|
|
LayerData *activData = nextData;
|
|
|
|
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
|
|
|
|
activData->skipFlags[DNN_BACKEND_DEFAULT] = true;
|
2017-11-27 12:57:36 +08:00
|
|
|
if ( preferableTarget == DNN_TARGET_OPENCL )
|
|
|
|
ld.umat_outputBlobs = layers[lpNext.lid].umat_outputBlobs;
|
|
|
|
else
|
|
|
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
|
2017-11-20 11:29:18 +08:00
|
|
|
|
|
|
|
if ( preferableTarget == DNN_TARGET_OPENCL )
|
|
|
|
{
|
|
|
|
nextData = &layers[activData->consumers[0].lid];
|
|
|
|
lpNext = LayerPin(activData->consumers[0].lid, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fuse convlution layer followed by eltwise + relu
|
|
|
|
if ( preferableTarget == DNN_TARGET_OPENCL )
|
|
|
|
{
|
|
|
|
Ptr<EltwiseLayer> nextEltwiseLayer;
|
|
|
|
if( nextData )
|
|
|
|
nextEltwiseLayer = nextData->layerInstance.dynamicCast<EltwiseLayer>();
|
|
|
|
|
|
|
|
if( !nextEltwiseLayer.empty() && pinsToKeep.count(lpNext) == 0 )
|
|
|
|
{
|
|
|
|
LayerData *eltwiseData = nextData;
|
|
|
|
// go down from the second input and find the first non-skipped layer.
|
|
|
|
LayerData *downLayerData = &layers[eltwiseData->inputBlobsId[1].lid];
|
|
|
|
while (downLayerData->skipFlags[DNN_BACKEND_DEFAULT])
|
|
|
|
{
|
|
|
|
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
|
|
|
|
}
|
|
|
|
|
|
|
|
// second input layer is current layer.
|
|
|
|
if ( ld.id == downLayerData->id )
|
|
|
|
{
|
|
|
|
// go down from the first input and find the first non-skipped layer
|
|
|
|
downLayerData = &layers[eltwiseData->inputBlobsId[0].lid];
|
|
|
|
while (downLayerData->skipFlags[DNN_BACKEND_DEFAULT])
|
|
|
|
{
|
|
|
|
if ( !downLayerData->type.compare("Eltwise") )
|
|
|
|
downLayerData = &layers[downLayerData->inputBlobsId[1].lid];
|
|
|
|
else
|
|
|
|
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<ConvolutionLayer> convLayer;
|
|
|
|
if( downLayerData )
|
|
|
|
convLayer = downLayerData->layerInstance.dynamicCast<ConvolutionLayer>();
|
|
|
|
|
|
|
|
// first input layer is convolution layer
|
|
|
|
if( !convLayer.empty() )
|
|
|
|
{
|
|
|
|
// fuse eltwise + activation layer
|
|
|
|
LayerData *firstConvLayerData = downLayerData;
|
|
|
|
{
|
|
|
|
nextData = &layers[eltwiseData->consumers[0].lid];
|
|
|
|
lpNext = LayerPin(eltwiseData->consumers[0].lid, 0);
|
|
|
|
Ptr<ActivationLayer> nextActivLayer;
|
|
|
|
if( nextData )
|
|
|
|
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
|
|
|
|
|
|
|
|
if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0 &&
|
|
|
|
(!nextData->type.compare("ReLU") ||
|
|
|
|
!nextData->type.compare("ChannelsPReLU") ||
|
|
|
|
!nextData->type.compare("Power")) &&
|
|
|
|
currLayer->setActivation(nextActivLayer) )
|
|
|
|
{
|
2017-11-27 12:57:36 +08:00
|
|
|
CV_Assert(firstConvLayerData->umat_outputBlobs.size() == 1 && ld.umat_inputBlobs.size() == 1);
|
|
|
|
ld.umat_inputBlobs.push_back(firstConvLayerData->umat_outputBlobs[0]);
|
2017-11-20 11:29:18 +08:00
|
|
|
printf_(("\tfused with %s\n", nextEltwiseLayer->name.c_str()));
|
|
|
|
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
|
|
|
|
eltwiseData->skipFlags[DNN_BACKEND_DEFAULT] = true;
|
|
|
|
nextData->skipFlags[DNN_BACKEND_DEFAULT] = true;
|
2017-11-27 12:57:36 +08:00
|
|
|
ld.umat_outputBlobs = layers[lpNext.lid].umat_outputBlobs;
|
2017-11-20 11:29:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2017-08-29 15:48:19 +08:00
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
2017-07-04 22:23:47 +08:00
|
|
|
|
|
|
|
// the optimization #2. if there is no layer that takes max pooling layer's computed
|
|
|
|
// max indices (and only some semantical segmentation networks might need this;
|
|
|
|
// many others only take the maximum values), then we switch the max pooling
|
|
|
|
// layer to the faster operating mode.
|
2017-06-26 18:35:51 +08:00
|
|
|
Ptr<PoolingLayer> poolingLayer = ld.layerInstance.dynamicCast<PoolingLayer>();
|
|
|
|
if( !poolingLayer.empty() && !ld.consumers.empty() )
|
|
|
|
{
|
|
|
|
size_t i = 0, nconsumers = ld.consumers.size();
|
|
|
|
for( ; i < nconsumers; i++ )
|
|
|
|
if( ld.consumers[i].oid > 0 )
|
|
|
|
break;
|
|
|
|
// if there is no layer that takes the second output pin of the pooling layer
|
|
|
|
// on input then we don't need to compute the indices
|
|
|
|
if( i >= nconsumers )
|
2017-06-28 16:15:22 +08:00
|
|
|
{
|
2017-06-26 18:35:51 +08:00
|
|
|
poolingLayer->computeMaxIdx = false;
|
2017-07-04 22:23:47 +08:00
|
|
|
printf_(("\tsimplified pooling layer %s\n", poolingLayer->name.c_str()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// the optimization #3. if there is concat layer that concatenates channels
|
|
|
|
// from the inputs together (i.e. axis == 1) then we make the inputs of
|
|
|
|
// the concat layer to write to the concatetion output buffer
|
|
|
|
// (and so we eliminate the concatenation layer, because the channels
|
|
|
|
// are concatenated implicitly).
|
|
|
|
Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
|
2017-08-28 22:37:09 +08:00
|
|
|
if( !concatLayer.empty() && concatLayer->axis == 1 && !concatLayer->padding &&
|
2017-07-04 22:23:47 +08:00
|
|
|
ld.outputBlobs.size() == 1 )
|
|
|
|
{
|
|
|
|
Mat& output = ld.outputBlobs[0];
|
|
|
|
|
|
|
|
// TODO: in general, this optimization can always be done, but
|
|
|
|
// many layers currently check that the input/output blobs are
|
|
|
|
// continuous arrays. Unfortunately, this is not true when
|
|
|
|
// the concatenation optimization is applied with batch_size > 1.
|
|
|
|
// so, for now, we only apply this optimization in the most popular
|
|
|
|
// case batch_size == 1.
|
|
|
|
if( output.dims == 4 && output.size[0] == 1 )
|
|
|
|
{
|
|
|
|
size_t i, ninputs = ld.inputBlobsId.size();
|
|
|
|
std::vector<LayerPin> realinputs(ninputs);
|
|
|
|
for( i = 0; i < ninputs; i++ )
|
|
|
|
{
|
|
|
|
LayerPin pin = ld.inputBlobsId[i];
|
|
|
|
LayerData* inp_i_data = &layers[pin.lid];
|
|
|
|
while(inp_i_data->skipFlags[DNN_BACKEND_DEFAULT] &&
|
|
|
|
inp_i_data->inputBlobsId.size() == 1)
|
|
|
|
{
|
|
|
|
pin = inp_i_data->inputBlobsId[0];
|
|
|
|
inp_i_data = &layers[pin.lid];
|
|
|
|
}
|
|
|
|
printf_(("\treal input for %s is %s\n",
|
|
|
|
layers[ld.inputBlobsId[i].lid].getLayerInstance()->name.c_str(),
|
|
|
|
inp_i_data->getLayerInstance()->name.c_str()));
|
|
|
|
|
2017-11-02 21:21:06 +08:00
|
|
|
if(inp_i_data->skipFlags[DNN_BACKEND_DEFAULT] || inp_i_data->consumers.size() != 1)
|
2017-07-04 22:23:47 +08:00
|
|
|
break;
|
|
|
|
realinputs[i] = pin;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( i >= ninputs )
|
|
|
|
{
|
|
|
|
Range chrange[] = { Range::all(), Range::all(), Range::all(), Range::all() };
|
|
|
|
int ofs = 0;
|
|
|
|
for( i = 0; i < ninputs; i++ )
|
|
|
|
{
|
|
|
|
LayerPin pin = realinputs[i];
|
|
|
|
LayerData* inp_i_data = &layers[pin.lid];
|
|
|
|
int channels_i = ld.inputBlobs[i]->size[1];
|
|
|
|
chrange[1] = Range(ofs, ofs + channels_i);
|
|
|
|
printf_(("\toutput %s(%d) to channels (%d, %d)\n", inp_i_data->layerInstance->name.c_str(),
|
|
|
|
pin.oid, ofs, ofs + channels_i));
|
|
|
|
ofs += channels_i;
|
|
|
|
Mat output_slice = output(chrange);
|
|
|
|
Mat& curr_output = inp_i_data->outputBlobs[pin.oid];
|
|
|
|
CV_Assert(output_slice.isContinuous() && output_slice.size == curr_output.size);
|
|
|
|
curr_output = output_slice;
|
2017-11-02 21:21:06 +08:00
|
|
|
|
|
|
|
pin = ld.inputBlobsId[i];
|
|
|
|
inp_i_data = &layers[pin.lid];
|
|
|
|
for (int j = 0; j < inp_i_data->consumers.size(); ++j)
|
|
|
|
{
|
|
|
|
LayerPin consumer = inp_i_data->consumers[j];
|
|
|
|
layers[consumer.lid].inputBlobs[consumer.oid] = &curr_output;
|
|
|
|
}
|
2017-07-04 22:23:47 +08:00
|
|
|
}
|
|
|
|
ld.skipFlags[DNN_BACKEND_DEFAULT] = true;
|
|
|
|
printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
|
|
|
|
}
|
2017-06-28 16:15:22 +08:00
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
MapIdToLayerData::iterator it;
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
|
|
it->second.flag = 0;
|
|
|
|
|
|
|
|
CV_Assert(!layers[0].outputBlobs.empty());
|
|
|
|
ShapesVec inputShapes;
|
|
|
|
for(int i = 0; i < layers[0].outputBlobs.size(); i++)
|
|
|
|
{
|
|
|
|
CV_Assert(layers[0].outputBlobs[i].total());
|
|
|
|
inputShapes.push_back(shape(layers[0].outputBlobs[i]));
|
|
|
|
}
|
|
|
|
LayersShapesMap layersShapes;
|
|
|
|
getLayersShapes(inputShapes, layersShapes);
|
|
|
|
|
|
|
|
blobManager.reset();
|
2017-11-09 12:57:37 +08:00
|
|
|
blobManager.setPreferableTarget(preferableTarget);
|
|
|
|
blobManager.setPreferableBackend(preferableBackend);
|
2017-09-06 15:34:07 +08:00
|
|
|
backendWrappers.clear();
|
2017-11-02 21:21:06 +08:00
|
|
|
// Fake references to input blobs.
|
|
|
|
for (int i = 0; i < layers[0].outputBlobs.size(); ++i)
|
|
|
|
blobManager.addReference(LayerPin(0, i));
|
2017-06-26 18:35:51 +08:00
|
|
|
for (it = layers.begin(); it != layers.end(); ++it)
|
|
|
|
{
|
|
|
|
const LayerData& ld = it->second;
|
|
|
|
blobManager.addReferences(ld.inputBlobsId);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < blobsToKeep_.size(); i++)
|
|
|
|
{
|
|
|
|
blobManager.addReference(blobsToKeep_[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
int lid = it->first;
|
|
|
|
allocateLayer(lid, layersShapes);
|
|
|
|
}
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
layersTimings.resize(lastLayerId + 1, 0);
|
2017-06-26 18:35:51 +08:00
|
|
|
fuseLayers(blobsToKeep_);
|
|
|
|
}
|
|
|
|
|
|
|
|
void forwardLayer(LayerData &ld)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
Ptr<Layer> layer = ld.layerInstance;
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
TickMeter tm;
|
|
|
|
tm.start();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT ||
|
|
|
|
!layer->supportBackend(preferableBackend))
|
|
|
|
{
|
|
|
|
if( !ld.skipFlags[DNN_BACKEND_DEFAULT] )
|
2017-09-06 15:34:07 +08:00
|
|
|
{
|
|
|
|
for (int i = 0, n = ld.inputBlobsWrappers.size(); i < n; ++i)
|
|
|
|
{
|
|
|
|
if (!ld.inputBlobsWrappers[i].empty())
|
|
|
|
ld.inputBlobsWrappers[i]->copyToHost();
|
|
|
|
}
|
2017-11-09 12:57:37 +08:00
|
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT && preferableTarget == DNN_TARGET_OPENCL)
|
|
|
|
layer->forward(ld.umat_inputBlobs, ld.umat_outputBlobs, ld.umat_internals);
|
|
|
|
else
|
|
|
|
layer->forward(ld.inputBlobs, ld.outputBlobs, ld.internals);
|
2017-09-06 15:34:07 +08:00
|
|
|
for (int i = 0, n = ld.outputBlobsWrappers.size(); i < n; ++i)
|
|
|
|
{
|
|
|
|
if (!ld.outputBlobsWrappers[i].empty())
|
|
|
|
ld.outputBlobsWrappers[i]->setHostDirty();
|
|
|
|
}
|
|
|
|
}
|
2017-08-02 22:27:58 +08:00
|
|
|
else
|
|
|
|
tm.reset();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
else if (!ld.skipFlags[preferableBackend])
|
|
|
|
{
|
|
|
|
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
|
|
|
|
if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
|
|
{
|
2017-09-06 15:34:07 +08:00
|
|
|
forwardHalide(ld.outputBlobsWrappers, node);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
tm.stop();
|
|
|
|
layersTimings[ld.id] = tm.getTimeTicks();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
ld.flag = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void forwardToLayer(LayerData &ld, bool clearFlags = true)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (clearFlags)
|
|
|
|
{
|
|
|
|
MapIdToLayerData::iterator it;
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
|
|
it->second.flag = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//already was forwarded
|
|
|
|
if (ld.flag)
|
|
|
|
return;
|
|
|
|
|
|
|
|
//forward parents
|
|
|
|
MapIdToLayerData::iterator it;
|
2017-09-05 22:10:16 +08:00
|
|
|
for (it = layers.begin(); it != layers.end() && (it->second.id < ld.id); ++it)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
LayerData &ld = it->second;
|
|
|
|
if (ld.flag)
|
|
|
|
continue;
|
|
|
|
forwardLayer(ld);
|
|
|
|
}
|
|
|
|
|
|
|
|
//forward itself
|
|
|
|
forwardLayer(ld);
|
|
|
|
}
|
|
|
|
|
|
|
|
void forwardAll()
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-09-05 22:10:16 +08:00
|
|
|
MapIdToLayerData::reverse_iterator last_layer = layers.rbegin();
|
|
|
|
CV_Assert(last_layer != layers.rend());
|
|
|
|
forwardToLayer(last_layer->second, true);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
|
|
|
|
{
|
|
|
|
std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;
|
|
|
|
|
|
|
|
if (inOutShapes[id].in.empty())
|
|
|
|
{
|
|
|
|
for(int i = 0; i < inputLayerIds.size(); i++)
|
|
|
|
{
|
|
|
|
int layerId = inputLayerIds[i].lid;
|
|
|
|
LayersShapesMap::iterator it =
|
|
|
|
inOutShapes.find(layerId);
|
|
|
|
if(it == inOutShapes.end() ||
|
|
|
|
it->second.out.empty())
|
|
|
|
{
|
|
|
|
getLayerShapesRecursively(layerId, inOutShapes);
|
|
|
|
}
|
|
|
|
const MatShape& shape = inOutShapes[layerId].out[inputLayerIds[i].oid];
|
|
|
|
inOutShapes[id].in.push_back(shape);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const ShapesVec& is = inOutShapes[id].in;
|
|
|
|
ShapesVec& os = inOutShapes[id].out;
|
|
|
|
ShapesVec& ints = inOutShapes[id].internal;
|
|
|
|
int requiredOutputs = layers[id].requiredOutputs.size();
|
|
|
|
inOutShapes[id].supportInPlace =
|
|
|
|
layers[id].getLayerInstance()->getMemoryShapes(is, requiredOutputs, os, ints);
|
|
|
|
}
|
|
|
|
|
|
|
|
void getLayersShapes(const ShapesVec& netInputShapes,
|
|
|
|
LayersShapesMap& inOutShapes)
|
|
|
|
{
|
|
|
|
inOutShapes.clear();
|
|
|
|
|
|
|
|
inOutShapes[0].in = netInputShapes; //insert shape for first input layer
|
|
|
|
for (MapIdToLayerData::iterator it = layers.begin();
|
|
|
|
it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
getLayerShapesRecursively(it->first, inOutShapes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void getLayerShapes(const ShapesVec& netInputShapes,
|
|
|
|
const int layerId,
|
|
|
|
LayerShapes& shapes)
|
|
|
|
{
|
|
|
|
LayersShapesMap inOutShapes;
|
|
|
|
inOutShapes[0].in = netInputShapes; //insert shape for first input layer
|
|
|
|
getLayerShapesRecursively(layerId, inOutShapes);
|
|
|
|
shapes = inOutShapes[layerId];
|
|
|
|
}
|
|
|
|
|
|
|
|
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
|
|
|
|
{
|
|
|
|
return *std::max_element(pins.begin(), pins.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat getBlob(const LayerPin& pin)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (!pin.valid())
|
|
|
|
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
|
|
|
|
|
|
|
|
LayerData &ld = layers[pin.lid];
|
|
|
|
if ((size_t)pin.oid >= ld.outputBlobs.size())
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) +
|
|
|
|
" outputs, the #" + toString(pin.oid) + " was requsted");
|
|
|
|
}
|
2017-11-16 11:20:08 +08:00
|
|
|
if (preferableBackend != DNN_BACKEND_DEFAULT)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
// Transfer data to CPU if it's require.
|
2017-09-06 15:34:07 +08:00
|
|
|
ld.outputBlobsWrappers[pin.oid]->copyToHost();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
CV_Assert(preferableTarget == DNN_TARGET_CPU || preferableTarget == DNN_TARGET_OPENCL);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
2017-11-09 12:57:37 +08:00
|
|
|
|
|
|
|
if (ld.umat_outputBlobs.size() > 0 && !ld.umat_outputBlobs[pin.oid].empty())
|
|
|
|
ld.umat_outputBlobs[pin.oid].copyTo(ld.outputBlobs[pin.oid]);
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
return ld.outputBlobs[pin.oid];
|
|
|
|
}
|
|
|
|
|
2017-11-16 11:20:08 +08:00
|
|
|
void getBlob(UMat& umat, const LayerPin& pin)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
|
|
|
if (!pin.valid())
|
|
|
|
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
|
|
|
|
|
|
|
|
LayerData &ld = layers[pin.lid];
|
|
|
|
if ((size_t)pin.oid >= ld.outputBlobs.size())
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) +
|
|
|
|
" outputs, the #" + toString(pin.oid) + " was requsted");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ld.umat_outputBlobs.size() > 0 && !ld.umat_outputBlobs[pin.oid].empty())
|
|
|
|
umat = ld.umat_outputBlobs[pin.oid];
|
|
|
|
else
|
|
|
|
umat = UMat();
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
Mat getBlob(String outputName)
|
|
|
|
{
|
|
|
|
return getBlob(getPinByAlias(outputName));
|
|
|
|
}
|
2017-11-16 11:20:08 +08:00
|
|
|
|
|
|
|
void getBlob(UMat& umat, String outputName)
|
|
|
|
{
|
|
|
|
getBlob(umat, getPinByAlias(outputName));
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
Net::Net() : impl(new Net::Impl)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
Net::~Net()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
int Net::addLayer(const String &name, const String &type, LayerParams ¶ms)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
if (name.find('.') != String::npos)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsBadArg, "Added layer name \"" + name + "\" must not contain dot symbol");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (impl->getLayerId(name) >= 0)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int id = ++impl->lastLayerId;
|
|
|
|
impl->layerNameToId.insert(std::make_pair(name, id));
|
|
|
|
impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));
|
|
|
|
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Net::addLayerToPrev(const String &name, const String &type, LayerParams ¶ms)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
int prvLid = impl->lastLayerId;
|
|
|
|
int newLid = this->addLayer(name, type, params);
|
|
|
|
this->connect(prvLid, 0, newLid, 0);
|
|
|
|
return newLid;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
impl->connect(outLayerId, outNum, inpLayerId, inpNum);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::connect(String _outPin, String _inPin)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
LayerPin outPin = impl->getPinByAlias(_outPin);
|
|
|
|
LayerPin inpPin = impl->getPinByAlias(_inPin);
|
|
|
|
|
|
|
|
CV_Assert(outPin.valid() && inpPin.valid());
|
|
|
|
|
|
|
|
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat Net::forward(const String& outputName)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
String layerName = outputName;
|
|
|
|
|
|
|
|
if (layerName.empty())
|
|
|
|
layerName = getLayerNames().back();
|
|
|
|
|
|
|
|
impl->setUpNet();
|
|
|
|
impl->forwardToLayer(impl->getLayerData(layerName));
|
|
|
|
|
|
|
|
return impl->getBlob(layerName);
|
|
|
|
}
|
|
|
|
|
2017-11-16 11:20:08 +08:00
|
|
|
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
impl->setUpNet();
|
|
|
|
|
|
|
|
String layerName = outputName;
|
|
|
|
|
|
|
|
if (layerName.empty())
|
|
|
|
layerName = getLayerNames().back();
|
|
|
|
|
|
|
|
impl->forwardToLayer(impl->getLayerData(layerName));
|
|
|
|
|
|
|
|
LayerPin pin = impl->getPinByAlias(layerName);
|
|
|
|
LayerData &ld = impl->layers[pin.lid];
|
2017-11-09 12:57:37 +08:00
|
|
|
|
2017-11-16 11:20:08 +08:00
|
|
|
if (outputBlobs.isUMat())
|
2017-11-09 12:57:37 +08:00
|
|
|
{
|
2017-11-16 11:20:08 +08:00
|
|
|
if (ld.umat_outputBlobs.size() > 0)
|
|
|
|
{
|
|
|
|
UMat umat;
|
|
|
|
impl->getBlob(umat, layerName);
|
|
|
|
outputBlobs.assign(umat);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (outputBlobs.isMat())
|
|
|
|
{
|
|
|
|
outputBlobs.assign(impl->getBlob(layerName));
|
|
|
|
}
|
|
|
|
else if (outputBlobs.isMatVector())
|
|
|
|
{
|
|
|
|
if (ld.umat_outputBlobs.size() > 0)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < ld.umat_outputBlobs.size(); i++)
|
|
|
|
ld.umat_outputBlobs[i].copyTo(ld.outputBlobs[i]);
|
|
|
|
}
|
|
|
|
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
|
|
|
|
outputvec = ld.outputBlobs;
|
|
|
|
}
|
|
|
|
else if (outputBlobs.isUMatVector())
|
|
|
|
{
|
|
|
|
if (ld.umat_outputBlobs.size() > 0)
|
|
|
|
{
|
|
|
|
std::vector<UMat> & outputvec = *(std::vector<UMat> *)outputBlobs.getObj();
|
|
|
|
outputvec = ld.umat_outputBlobs;
|
|
|
|
}
|
2017-11-09 12:57:37 +08:00
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-11-16 11:20:08 +08:00
|
|
|
void Net::forward(OutputArrayOfArrays outputBlobs,
|
2017-06-26 18:35:51 +08:00
|
|
|
const std::vector<String>& outBlobNames)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<LayerPin> pins;
|
|
|
|
for (int i = 0; i < outBlobNames.size(); i++)
|
|
|
|
{
|
2017-11-16 11:20:08 +08:00
|
|
|
pins.push_back(impl->getPinByAlias(outBlobNames[i]));
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
impl->setUpNet(pins);
|
|
|
|
|
|
|
|
LayerPin out = impl->getLatestLayerPin(pins);
|
|
|
|
|
|
|
|
impl->forwardToLayer(impl->getLayerData(out.lid));
|
|
|
|
|
2017-11-16 11:20:08 +08:00
|
|
|
std::vector<Mat> matvec;
|
2017-06-26 18:35:51 +08:00
|
|
|
for (int i = 0; i < pins.size(); i++)
|
|
|
|
{
|
2017-11-16 11:20:08 +08:00
|
|
|
matvec.push_back(impl->getBlob(pins[i]));
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
2017-11-16 11:20:08 +08:00
|
|
|
|
|
|
|
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
|
|
|
|
outputvec = matvec;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Net::forward(std::vector<std::vector<Mat> >& outputBlobs,
|
|
|
|
const std::vector<String>& outBlobNames)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<LayerPin> pins;
|
|
|
|
for (int i = 0; i < outBlobNames.size(); i++)
|
|
|
|
{
|
|
|
|
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
|
|
|
|
pins.insert(pins.end(), lp.begin(), lp.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
impl->setUpNet(pins);
|
|
|
|
|
|
|
|
LayerPin out = impl->getLatestLayerPin(pins);
|
|
|
|
|
|
|
|
impl->forwardToLayer(impl->getLayerData(out.lid));
|
|
|
|
|
|
|
|
outputBlobs.resize(outBlobNames.size());
|
|
|
|
for (int i = 0; i < outBlobNames.size(); i++)
|
|
|
|
{
|
|
|
|
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
|
|
|
|
for (int i = 0; i < lp.size(); i++)
|
|
|
|
{
|
|
|
|
outputBlobs[i].push_back(impl->getBlob(lp[i]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::setPreferableBackend(int backendId)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG(backendId);
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
if( impl->preferableBackend != backendId )
|
|
|
|
{
|
|
|
|
impl->preferableBackend = backendId;
|
2017-11-09 12:57:37 +08:00
|
|
|
impl->blobManager.setPreferableBackend(backendId);
|
2017-07-04 22:23:47 +08:00
|
|
|
impl->netWasAllocated = false;
|
|
|
|
impl->clear();
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Net::setPreferableTarget(int targetId)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG(targetId);
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
if( impl->preferableTarget != targetId )
|
|
|
|
{
|
|
|
|
impl->preferableTarget = targetId;
|
2017-11-09 12:57:37 +08:00
|
|
|
impl->blobManager.setPreferableTarget(targetId);
|
2017-07-04 22:23:47 +08:00
|
|
|
impl->netWasAllocated = false;
|
|
|
|
impl->clear();
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Net::setInputsNames(const std::vector<String> &inputBlobNames)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
impl->netInputLayer->setNames(inputBlobNames);
|
|
|
|
}
|
|
|
|
|
2017-12-03 04:52:35 +08:00
|
|
|
void Net::setInput(InputArray blob, const String& name)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
LayerPin pin;
|
|
|
|
pin.lid = 0;
|
|
|
|
pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name);
|
|
|
|
|
|
|
|
if (!pin.valid())
|
|
|
|
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found");
|
|
|
|
|
|
|
|
LayerData &ld = impl->layers[pin.lid];
|
|
|
|
ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
|
2017-11-09 12:57:37 +08:00
|
|
|
bool use_umat = (impl->preferableBackend == DNN_BACKEND_DEFAULT &&
|
|
|
|
impl->preferableTarget == DNN_TARGET_OPENCL);
|
|
|
|
if (use_umat)
|
|
|
|
ld.umat_outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
|
2017-09-06 15:34:07 +08:00
|
|
|
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
|
2017-06-26 18:35:51 +08:00
|
|
|
MatShape prevShape = shape(ld.outputBlobs[pin.oid]);
|
2017-12-03 04:52:35 +08:00
|
|
|
Mat blob_ = blob.getMat();
|
2017-06-26 18:35:51 +08:00
|
|
|
bool oldShape = prevShape == shape(blob_);
|
|
|
|
if (oldShape)
|
2017-11-09 12:57:37 +08:00
|
|
|
{
|
2017-06-26 18:35:51 +08:00
|
|
|
blob_.copyTo(ld.outputBlobs[pin.oid]);
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
blob_.copyTo(ld.umat_outputBlobs[pin.oid]);
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
else
|
2017-11-09 12:57:37 +08:00
|
|
|
{
|
2017-06-26 18:35:51 +08:00
|
|
|
ld.outputBlobs[pin.oid] = blob_.clone();
|
2017-11-09 12:57:37 +08:00
|
|
|
if (use_umat)
|
|
|
|
blob_.copyTo(ld.umat_outputBlobs[pin.oid]);
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-09-06 15:34:07 +08:00
|
|
|
if (!ld.outputBlobsWrappers[pin.oid].empty())
|
|
|
|
{
|
|
|
|
ld.outputBlobsWrappers[pin.oid]->setHostDirty();
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
impl->netWasAllocated = impl->netWasAllocated && oldShape;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat Net::getParam(LayerId layer, int numParam)
|
|
|
|
{
|
|
|
|
LayerData &ld = impl->getLayerData(layer);
|
|
|
|
|
|
|
|
std::vector<Mat> &layerBlobs = ld.layerInstance->blobs;
|
|
|
|
CV_Assert(numParam < (int)layerBlobs.size());
|
|
|
|
return layerBlobs[numParam];
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::setParam(LayerId layer, int numParam, const Mat &blob)
|
|
|
|
{
|
|
|
|
LayerData &ld = impl->getLayerData(layer);
|
|
|
|
|
|
|
|
std::vector<Mat> &layerBlobs = ld.layerInstance->blobs;
|
|
|
|
CV_Assert(numParam < (int)layerBlobs.size());
|
|
|
|
//we don't make strong checks, use this function carefully
|
|
|
|
layerBlobs[numParam] = blob;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Net::getLayerId(const String &layer)
|
|
|
|
{
|
|
|
|
return impl->getLayerId(layer);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::deleteLayer(LayerId)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<Layer> Net::getLayer(LayerId layerId)
|
|
|
|
{
|
|
|
|
LayerData &ld = impl->getLayerData(layerId);
|
2017-06-27 14:52:44 +08:00
|
|
|
return ld.getLayerInstance();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId)
|
|
|
|
{
|
|
|
|
LayerData &ld = impl->getLayerData(layerId);
|
|
|
|
if (!ld.layerInstance)
|
|
|
|
CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str()));
|
|
|
|
|
|
|
|
std::vector<Ptr<Layer> > inputLayers;
|
|
|
|
inputLayers.reserve(ld.inputLayersId.size());
|
|
|
|
std::set<int>::iterator it;
|
|
|
|
for (it = ld.inputLayersId.begin(); it != ld.inputLayersId.end(); ++it) {
|
|
|
|
inputLayers.push_back(getLayer(*it));
|
|
|
|
}
|
|
|
|
return inputLayers;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<String> Net::getLayerNames() const
|
|
|
|
{
|
|
|
|
std::vector<String> res;
|
|
|
|
res.reserve(impl->layers.size());
|
|
|
|
|
|
|
|
Impl::MapIdToLayerData::iterator it;
|
|
|
|
for (it = impl->layers.begin(); it != impl->layers.end(); it++)
|
|
|
|
{
|
|
|
|
if (it->second.id) //skip Data layer
|
|
|
|
res.push_back(it->second.name);
|
|
|
|
}
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Net::empty() const
|
|
|
|
{
|
|
|
|
return impl->layers.size() <= 1; //first layer is default Data layer
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> Net::getUnconnectedOutLayers() const
|
|
|
|
{
|
|
|
|
std::vector<int> layersIds;
|
|
|
|
|
|
|
|
Impl::MapIdToLayerData::iterator it;
|
|
|
|
for (it = impl->layers.begin(); it != impl->layers.end(); it++)
|
|
|
|
{
|
|
|
|
int lid = it->first;
|
|
|
|
LayerData &ld = it->second;
|
|
|
|
|
|
|
|
if (ld.requiredOutputs.size() == 0)
|
|
|
|
layersIds.push_back(lid);
|
|
|
|
}
|
|
|
|
|
|
|
|
return layersIds;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getLayersShapes(const ShapesVec& netInputShapes,
|
2017-08-02 22:27:58 +08:00
|
|
|
std::vector<int>& layersIds,
|
|
|
|
std::vector<ShapesVec>& inLayersShapes,
|
|
|
|
std::vector<ShapesVec>& outLayersShapes) const
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-08-02 22:27:58 +08:00
|
|
|
layersIds.clear();
|
|
|
|
inLayersShapes.clear();
|
|
|
|
outLayersShapes.clear();
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Impl::LayersShapesMap inOutShapes;
|
|
|
|
impl->getLayersShapes(netInputShapes, inOutShapes);
|
|
|
|
|
|
|
|
for(Impl::LayersShapesMap::const_iterator it = inOutShapes.begin();
|
|
|
|
it != inOutShapes.end(); it++)
|
|
|
|
{
|
2017-08-02 22:27:58 +08:00
|
|
|
layersIds.push_back(it->first);
|
|
|
|
inLayersShapes.push_back(it->second.in);
|
|
|
|
outLayersShapes.push_back(it->second.out);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getLayersShapes(const MatShape& netInputShape,
|
2017-08-02 22:27:58 +08:00
|
|
|
std::vector<int>& layerIds,
|
|
|
|
std::vector<ShapesVec>& inLayersShapes,
|
|
|
|
std::vector<ShapesVec>& outLayersShapes) const
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
getLayersShapes(ShapesVec(1, netInputShape),
|
|
|
|
layerIds, inLayersShapes, outLayersShapes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getLayerShapes(const MatShape& netInputShape,
|
|
|
|
const int layerId,
|
2017-08-02 22:27:58 +08:00
|
|
|
ShapesVec& inLayerShapes,
|
|
|
|
ShapesVec& outLayerShapes) const
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
getLayerShapes(ShapesVec(1, netInputShape),
|
|
|
|
layerId, inLayerShapes, outLayerShapes);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getLayerShapes(const ShapesVec& netInputShapes,
|
|
|
|
const int layerId,
|
2017-08-02 22:27:58 +08:00
|
|
|
ShapesVec& inLayerShapes,
|
|
|
|
ShapesVec& outLayerShapes) const
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
LayerShapes shapes;
|
|
|
|
impl->getLayerShapes(netInputShapes, layerId, shapes);
|
2017-08-02 22:27:58 +08:00
|
|
|
inLayerShapes = shapes.in;
|
|
|
|
outLayerShapes = shapes.out;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
int64 flops = 0;
|
|
|
|
std::vector<int> ids;
|
|
|
|
std::vector<std::vector<MatShape> > inShapes, outShapes;
|
2017-08-02 22:27:58 +08:00
|
|
|
getLayersShapes(netInputShapes, ids, inShapes, outShapes);
|
2017-06-26 18:35:51 +08:00
|
|
|
CV_Assert(inShapes.size() == outShapes.size());
|
|
|
|
CV_Assert(inShapes.size() == ids.size());
|
|
|
|
|
|
|
|
for(int i = 0; i < ids.size(); i++)
|
|
|
|
{
|
|
|
|
flops += impl->layers[ids[i]].getLayerInstance()->getFLOPS(inShapes[i],
|
|
|
|
outShapes[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64 Net::getFLOPS(const MatShape& netInputShape) const
|
|
|
|
{
|
|
|
|
return getFLOPS(std::vector<MatShape>(1, netInputShape));
|
|
|
|
}
|
|
|
|
|
|
|
|
int64 Net::getFLOPS(const int layerId,
|
|
|
|
const std::vector<MatShape>& netInputShapes) const
|
|
|
|
{
|
|
|
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
|
|
|
|
CV_Assert(layer != impl->layers.end());
|
|
|
|
|
|
|
|
LayerShapes shapes;
|
|
|
|
impl->getLayerShapes(netInputShapes, layerId, shapes);
|
|
|
|
|
|
|
|
return layer->second.getLayerInstance()->getFLOPS(shapes.in, shapes.out);
|
|
|
|
}
|
|
|
|
|
|
|
|
int64 Net::getFLOPS(const int layerId,
|
|
|
|
const MatShape& netInputShape) const
|
|
|
|
{
|
|
|
|
return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getLayerTypes(std::vector<String>& layersTypes) const
|
|
|
|
{
|
|
|
|
layersTypes.clear();
|
|
|
|
|
|
|
|
std::map<String, int> layers;
|
|
|
|
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
|
|
|
|
it != impl->layers.end(); it++)
|
|
|
|
{
|
|
|
|
if (layers.find(it->second.type) == layers.end())
|
|
|
|
layers[it->second.type] = 0;
|
|
|
|
layers[it->second.type]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (std::map<String, int>::iterator it = layers.begin();
|
|
|
|
it != layers.end(); it++)
|
|
|
|
{
|
|
|
|
layersTypes.push_back(it->first);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int Net::getLayersCount(const String& layerType) const
|
|
|
|
{
|
|
|
|
int count = 0;
|
|
|
|
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
|
|
|
|
it != impl->layers.end(); it++)
|
|
|
|
{
|
|
|
|
if (it->second.type == layerType)
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getMemoryConsumption(const int layerId,
|
|
|
|
const std::vector<MatShape>& netInputShapes,
|
|
|
|
size_t& weights, size_t& blobs) const
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
|
|
|
|
CV_Assert(layer != impl->layers.end());
|
|
|
|
|
|
|
|
weights = blobs = 0;
|
|
|
|
|
|
|
|
for(int i = 0; i < layer->second.params.blobs.size(); i++)
|
|
|
|
{
|
|
|
|
const Mat& weightsBlob = layer->second.params.blobs[i];
|
|
|
|
weights += weightsBlob.total()*weightsBlob.elemSize();
|
|
|
|
}
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
ShapesVec inLayerShapes, outLayerShapes;
|
|
|
|
getLayerShapes(netInputShapes, layerId, inLayerShapes, outLayerShapes);
|
2017-06-26 18:35:51 +08:00
|
|
|
for(int i = 0; i < outLayerShapes.size(); i++)
|
|
|
|
{
|
|
|
|
blobs += total(outLayerShapes[i]) * sizeof(float);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
|
|
|
|
size_t& weights, size_t& blobs) const
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<int> layerIds;
|
|
|
|
std::vector<size_t> w, b;
|
|
|
|
getMemoryConsumption(netInputShapes, layerIds, w, b);
|
|
|
|
|
|
|
|
weights = blobs = 0;
|
|
|
|
for(int i = 0; i < layerIds.size(); i++)
|
|
|
|
{
|
|
|
|
weights += w[i];
|
|
|
|
blobs += b[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getMemoryConsumption(const int layerId,
|
|
|
|
const MatShape& netInputShape,
|
|
|
|
size_t& weights, size_t& blobs) const
|
|
|
|
{
|
|
|
|
getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
|
|
|
|
weights, blobs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getMemoryConsumption(const MatShape& netInputShape,
|
|
|
|
size_t& weights, size_t& blobs) const
|
|
|
|
{
|
|
|
|
getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
|
|
|
|
weights, blobs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
|
|
|
|
std::vector<int>& layerIds, std::vector<size_t>& weights,
|
|
|
|
std::vector<size_t>& blobs) const
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
layerIds.clear();
|
|
|
|
weights.clear();
|
|
|
|
blobs.clear();
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
std::vector<std::vector<MatShape> > inLayerShapes, outLayerShapes;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
getLayersShapes(netInputShapes, layerIds, inLayerShapes, outLayerShapes);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
for(int i = 0; i < layerIds.size(); i++)
|
|
|
|
{
|
|
|
|
int w = 0, b = 0;
|
|
|
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerIds[i]);
|
|
|
|
CV_Assert(layer != impl->layers.end());
|
|
|
|
|
|
|
|
for(int j = 0; j < layer->second.params.blobs.size(); j++)
|
|
|
|
{
|
|
|
|
const Mat& weightsBlob = layer->second.params.blobs[j];
|
|
|
|
w += weightsBlob.total()*weightsBlob.elemSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int j = 0; j < outLayerShapes[i].size(); j++)
|
|
|
|
{
|
|
|
|
b += total(outLayerShapes[i][j]) * sizeof(float);
|
|
|
|
}
|
|
|
|
|
|
|
|
weights.push_back(w);
|
|
|
|
blobs.push_back(b);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
|
|
|
|
std::vector<size_t>& weights, std::vector<size_t>& blobs) const
|
|
|
|
{
|
|
|
|
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
|
|
|
|
weights, blobs);
|
|
|
|
}
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
void Net::enableFusion(bool fusion)
|
|
|
|
{
|
|
|
|
if( impl->fusion != fusion )
|
|
|
|
{
|
|
|
|
impl->fusion = fusion;
|
|
|
|
impl->netWasAllocated = false;
|
|
|
|
impl->clear();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void Net::setHalideScheduler(const String& scheduler)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
impl->halideConfigFile = scheduler;
|
|
|
|
}
|
|
|
|
|
2017-08-02 22:27:58 +08:00
|
|
|
int64 Net::getPerfProfile(std::vector<double>& timings)
|
|
|
|
{
|
|
|
|
timings = std::vector<double>(impl->layersTimings.begin() + 1, impl->layersTimings.end());
|
|
|
|
int64 total = std::accumulate(timings.begin(), timings.end(), 0);
|
|
|
|
return total;
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
Importer::~Importer() {}
|
|
|
|
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; }
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Layer::Layer(const LayerParams ¶ms)
|
|
|
|
: blobs(params.blobs), name(params.name), type(params.type)
|
|
|
|
{
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
preferableTarget = DNN_TARGET_CPU;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Layer::setParamsFrom(const LayerParams ¶ms)
|
|
|
|
{
|
|
|
|
blobs = params.blobs;
|
|
|
|
name = params.name;
|
|
|
|
type = params.type;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Layer::inputNameToIndex(String)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Layer::outputNameToIndex(String)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Layer::supportBackend(int backendId)
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_DEFAULT;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper> > &)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type +
|
|
|
|
" layers is not defined.");
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs,
|
|
|
|
const std::vector<Mat> &outputs, int targetId) const
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"),
|
|
|
|
xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile");
|
|
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
|
|
|
|
|
|
|
|
int outW, outH, outC, outN;
|
|
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
|
|
|
|
if (targetId == DNN_TARGET_CPU)
|
|
|
|
{
|
|
|
|
if (outW == 1 && outH == 1)
|
|
|
|
{
|
|
|
|
if (outC + outN == 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (outC > 8)
|
|
|
|
top.split(c, co, ci, 8)
|
|
|
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
|
|
|
|
.parallel(tile)
|
|
|
|
.vectorize(ci, 8);
|
|
|
|
else
|
|
|
|
top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
|
|
|
|
.parallel(tile);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (outH > 2)
|
|
|
|
{
|
|
|
|
top.reorder(x, c, y)
|
|
|
|
.split(y, yo, yi, 2)
|
|
|
|
.fuse(yo, n, tile)
|
|
|
|
.parallel(tile)
|
|
|
|
.unroll(yi)
|
|
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (targetId == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC;
|
|
|
|
if (outW == 1 && outH == 1)
|
|
|
|
{
|
|
|
|
top.split(c, co, ci, c_split)
|
|
|
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
|
|
|
|
.gpu_blocks(tile)
|
|
|
|
.gpu_threads(ci);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW;
|
|
|
|
int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH;
|
|
|
|
top.split(x, xo, xi, x_split).split(y, yo, yi, y_split)
|
|
|
|
.split(c, co, ci, c_split)
|
|
|
|
.gpu_blocks(xo, yo, co)
|
|
|
|
.gpu_threads(xi, yi)
|
|
|
|
.reorder(xi, yi, ci, xo, yo, co)
|
|
|
|
.vectorize(ci);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
|
|
|
|
{
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
2017-06-28 16:15:22 +08:00
|
|
|
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
|
|
|
|
bool Layer::setBatchNorm(const Ptr<BatchNormLayer>&) { return false; }
|
2017-07-04 22:23:47 +08:00
|
|
|
bool Layer::setScale(const Ptr<ScaleLayer>&) { return false; }
|
|
|
|
void Layer::unsetAttached()
|
|
|
|
{
|
|
|
|
setActivation(Ptr<ActivationLayer>());
|
|
|
|
setBatchNorm(Ptr<BatchNormLayer>());
|
|
|
|
setScale(Ptr<ScaleLayer>());
|
|
|
|
}
|
2017-06-28 16:15:22 +08:00
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
template <typename T>
|
|
|
|
static void vecToPVec(const std::vector<T> &v, std::vector<T*> &pv)
|
|
|
|
{
|
|
|
|
pv.resize(v.size());
|
|
|
|
for (size_t i = 0; i < v.size(); i++)
|
|
|
|
pv[i] = const_cast<T*>(&v[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<Mat*> inputsp;
|
|
|
|
vecToPVec(inputs, inputsp);
|
|
|
|
this->finalize(inputsp, outputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output)
|
|
|
|
{
|
|
|
|
(void)input;(void)output;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<Mat> outputs;
|
|
|
|
this->finalize(inputs, outputs);
|
|
|
|
return outputs;
|
|
|
|
}
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
2017-11-09 12:57:37 +08:00
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
2017-06-28 19:46:58 +08:00
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
std::vector<Mat> inpvec;
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
std::vector<Mat> internals;
|
|
|
|
|
|
|
|
inputs_arr.getMatVector(inpvec);
|
|
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
internals_arr.getMatVector(internals);
|
|
|
|
|
|
|
|
std::vector<Mat*> inputs(inpvec.size());
|
|
|
|
for (int i = 0; i < inpvec.size(); i++)
|
|
|
|
inputs[i] = &inpvec[i];
|
|
|
|
|
|
|
|
this->forward(inputs, outputs, internals);
|
2017-11-22 19:00:58 +08:00
|
|
|
|
|
|
|
// sync results back
|
|
|
|
outputs_arr.assign(outputs);
|
|
|
|
internals_arr.assign(internals);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Layer::run(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
std::vector<Mat*> inputsp;
|
|
|
|
vecToPVec(inputs, inputsp);
|
|
|
|
this->finalize(inputsp, outputs);
|
|
|
|
this->forward(inputsp, outputs, internals);
|
|
|
|
}
|
|
|
|
|
|
|
|
Layer::~Layer() {}
|
|
|
|
|
|
|
|
bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
CV_Assert(inputs.size());
|
|
|
|
outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
static Mutex& getLayerFactoryMutex()
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 01:34:17 +08:00
|
|
|
static Mutex* volatile instance = NULL;
|
|
|
|
if (instance == NULL)
|
|
|
|
{
|
|
|
|
cv::AutoLock lock(getInitializationMutex());
|
|
|
|
if (instance == NULL)
|
|
|
|
instance = new Mutex();
|
|
|
|
}
|
|
|
|
return *instance;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef std::map<String, LayerFactory::Constuctor> LayerFactory_Impl;
|
|
|
|
|
|
|
|
static LayerFactory_Impl& getLayerFactoryImpl_()
|
|
|
|
{
|
|
|
|
static LayerFactory_Impl impl;
|
|
|
|
return impl;
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
static LayerFactory_Impl& getLayerFactoryImpl()
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 01:34:17 +08:00
|
|
|
static LayerFactory_Impl* volatile instance = NULL;
|
|
|
|
if (instance == NULL)
|
|
|
|
{
|
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
|
|
|
if (instance == NULL)
|
|
|
|
{
|
|
|
|
instance = &getLayerFactoryImpl_();
|
|
|
|
initializeLayerFactory();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return *instance;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-06-28 19:46:58 +08:00
|
|
|
void LayerFactory::registerLayer(const String &type, Constuctor constructor)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
2017-06-28 19:46:58 +08:00
|
|
|
String type_ = type.toLowerCase();
|
|
|
|
LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
if (it != getLayerFactoryImpl().end() && it->second != constructor)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_Error(cv::Error::StsBadArg, "Layer \"" + type_ + "\" already was registered");
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-06-28 19:46:58 +08:00
|
|
|
getLayerFactoryImpl().insert(std::make_pair(type_, constructor));
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-06-28 19:46:58 +08:00
|
|
|
void LayerFactory::unregisterLayer(const String &type)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
2017-06-28 19:46:58 +08:00
|
|
|
String type_ = type.toLowerCase();
|
|
|
|
getLayerFactoryImpl().erase(type_);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-06-28 19:46:58 +08:00
|
|
|
Ptr<Layer> LayerFactory::createLayerInstance(const String &type, LayerParams& params)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
2017-06-28 19:46:58 +08:00
|
|
|
String type_ = type.toLowerCase();
|
|
|
|
LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-06-28 01:34:17 +08:00
|
|
|
if (it != getLayerFactoryImpl().end())
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
return it->second(params);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
return Ptr<Layer>(); //NULL
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
BackendNode::BackendNode(int backendId) : backendId(backendId) {}
|
|
|
|
|
|
|
|
BackendNode::~BackendNode() {};
|
|
|
|
|
|
|
|
BackendWrapper::BackendWrapper(int backendId, int targetId)
|
|
|
|
: backendId(backendId), targetId(targetId) {}
|
|
|
|
|
|
|
|
BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented,
|
|
|
|
"Constructor of backend wrapper must be implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented,
|
|
|
|
"Constructor of backend wrapper must be implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
BackendWrapper::~BackendWrapper() {}
|
|
|
|
|
2017-06-29 03:59:02 +08:00
|
|
|
CV__DNN_EXPERIMENTAL_NS_END
|
|
|
|
}} // namespace
|