mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 08:37:57 +08:00
247 lines
9.3 KiB
Plaintext
247 lines
9.3 KiB
Plaintext
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#if !defined CUDA_DISABLER
|
||
|
|
||
|
#include "opencv2/core/cuda/common.hpp"
|
||
|
#include "opencv2/core/cuda/vec_traits.hpp"
|
||
|
#include "opencv2/core/cuda/vec_math.hpp"
|
||
|
#include "opencv2/core/cuda/reduce.hpp"
|
||
|
#include "opencv2/core/cuda/emulation.hpp"
|
||
|
#include "opencv2/core/cuda/limits.hpp"
|
||
|
#include "opencv2/core/cuda/utility.hpp"
|
||
|
|
||
|
using namespace cv::gpu;
|
||
|
using namespace cv::gpu::cudev;
|
||
|
|
||
|
namespace minMax
|
||
|
{
|
||
|
__device__ unsigned int blocks_finished = 0;
|
||
|
|
||
|
// To avoid shared bank conflicts we convert each value into value of
|
||
|
// appropriate type (32 bits minimum)
|
||
|
template <typename T> struct MinMaxTypeTraits;
|
||
|
template <> struct MinMaxTypeTraits<uchar> { typedef int best_type; };
|
||
|
template <> struct MinMaxTypeTraits<schar> { typedef int best_type; };
|
||
|
template <> struct MinMaxTypeTraits<ushort> { typedef int best_type; };
|
||
|
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
|
||
|
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
|
||
|
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
||
|
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
||
|
|
||
|
template <int BLOCK_SIZE, typename R>
|
||
|
struct GlobalReduce
|
||
|
{
|
||
|
static __device__ void run(R& mymin, R& mymax, R* minval, R* maxval, int tid, int bid, R* sminval, R* smaxval)
|
||
|
{
|
||
|
#if __CUDA_ARCH__ >= 200
|
||
|
if (tid == 0)
|
||
|
{
|
||
|
Emulation::glob::atomicMin(minval, mymin);
|
||
|
Emulation::glob::atomicMax(maxval, mymax);
|
||
|
}
|
||
|
#else
|
||
|
__shared__ bool is_last;
|
||
|
|
||
|
if (tid == 0)
|
||
|
{
|
||
|
minval[bid] = mymin;
|
||
|
maxval[bid] = mymax;
|
||
|
|
||
|
__threadfence();
|
||
|
|
||
|
unsigned int ticket = ::atomicAdd(&blocks_finished, 1);
|
||
|
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
if (is_last)
|
||
|
{
|
||
|
int idx = ::min(tid, gridDim.x * gridDim.y - 1);
|
||
|
|
||
|
mymin = minval[idx];
|
||
|
mymax = maxval[idx];
|
||
|
|
||
|
const minimum<R> minOp;
|
||
|
const maximum<R> maxOp;
|
||
|
cudev::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp));
|
||
|
|
||
|
if (tid == 0)
|
||
|
{
|
||
|
minval[0] = mymin;
|
||
|
maxval[0] = mymax;
|
||
|
|
||
|
blocks_finished = 0;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <int BLOCK_SIZE, typename T, typename R, class Mask>
|
||
|
__global__ void kernel(const PtrStepSz<T> src, const Mask mask, R* minval, R* maxval, const int twidth, const int theight)
|
||
|
{
|
||
|
__shared__ R sminval[BLOCK_SIZE];
|
||
|
__shared__ R smaxval[BLOCK_SIZE];
|
||
|
|
||
|
const int x0 = blockIdx.x * blockDim.x * twidth + threadIdx.x;
|
||
|
const int y0 = blockIdx.y * blockDim.y * theight + threadIdx.y;
|
||
|
|
||
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||
|
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
|
||
|
|
||
|
R mymin = numeric_limits<R>::max();
|
||
|
R mymax = -numeric_limits<R>::max();
|
||
|
|
||
|
const minimum<R> minOp;
|
||
|
const maximum<R> maxOp;
|
||
|
|
||
|
for (int i = 0, y = y0; i < theight && y < src.rows; ++i, y += blockDim.y)
|
||
|
{
|
||
|
const T* ptr = src.ptr(y);
|
||
|
|
||
|
for (int j = 0, x = x0; j < twidth && x < src.cols; ++j, x += blockDim.x)
|
||
|
{
|
||
|
if (mask(y, x))
|
||
|
{
|
||
|
const R srcVal = ptr[x];
|
||
|
|
||
|
mymin = minOp(mymin, srcVal);
|
||
|
mymax = maxOp(mymax, srcVal);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cudev::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp));
|
||
|
|
||
|
GlobalReduce<BLOCK_SIZE, R>::run(mymin, mymax, minval, maxval, tid, bid, sminval, smaxval);
|
||
|
}
|
||
|
|
||
|
const int threads_x = 32;
|
||
|
const int threads_y = 8;
|
||
|
|
||
|
void getLaunchCfg(int cols, int rows, dim3& block, dim3& grid)
|
||
|
{
|
||
|
block = dim3(threads_x, threads_y);
|
||
|
|
||
|
grid = dim3(divUp(cols, block.x * block.y),
|
||
|
divUp(rows, block.y * block.x));
|
||
|
|
||
|
grid.x = ::min(grid.x, block.x);
|
||
|
grid.y = ::min(grid.y, block.y);
|
||
|
}
|
||
|
|
||
|
void getBufSize(int cols, int rows, int& bufcols, int& bufrows)
|
||
|
{
|
||
|
dim3 block, grid;
|
||
|
getLaunchCfg(cols, rows, block, grid);
|
||
|
|
||
|
bufcols = grid.x * grid.y * sizeof(double);
|
||
|
bufrows = 2;
|
||
|
}
|
||
|
|
||
|
__global__ void setDefaultKernel(int* minval_buf, int* maxval_buf)
|
||
|
{
|
||
|
*minval_buf = numeric_limits<int>::max();
|
||
|
*maxval_buf = numeric_limits<int>::min();
|
||
|
}
|
||
|
__global__ void setDefaultKernel(float* minval_buf, float* maxval_buf)
|
||
|
{
|
||
|
*minval_buf = numeric_limits<float>::max();
|
||
|
*maxval_buf = -numeric_limits<float>::max();
|
||
|
}
|
||
|
__global__ void setDefaultKernel(double* minval_buf, double* maxval_buf)
|
||
|
{
|
||
|
*minval_buf = numeric_limits<double>::max();
|
||
|
*maxval_buf = -numeric_limits<double>::max();
|
||
|
}
|
||
|
|
||
|
template <typename R>
|
||
|
void setDefault(R* minval_buf, R* maxval_buf)
|
||
|
{
|
||
|
setDefaultKernel<<<1, 1>>>(minval_buf, maxval_buf);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf)
|
||
|
{
|
||
|
typedef typename MinMaxTypeTraits<T>::best_type R;
|
||
|
|
||
|
dim3 block, grid;
|
||
|
getLaunchCfg(src.cols, src.rows, block, grid);
|
||
|
|
||
|
const int twidth = divUp(divUp(src.cols, grid.x), block.x);
|
||
|
const int theight = divUp(divUp(src.rows, grid.y), block.y);
|
||
|
|
||
|
R* minval_buf = (R*) buf.ptr(0);
|
||
|
R* maxval_buf = (R*) buf.ptr(1);
|
||
|
|
||
|
setDefault(minval_buf, maxval_buf);
|
||
|
|
||
|
if (mask.data)
|
||
|
kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, twidth, theight);
|
||
|
else
|
||
|
kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, twidth, theight);
|
||
|
|
||
|
cudaSafeCall( cudaGetLastError() );
|
||
|
|
||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||
|
|
||
|
R minval_, maxval_;
|
||
|
cudaSafeCall( cudaMemcpy(&minval_, minval_buf, sizeof(R), cudaMemcpyDeviceToHost) );
|
||
|
cudaSafeCall( cudaMemcpy(&maxval_, maxval_buf, sizeof(R), cudaMemcpyDeviceToHost) );
|
||
|
*minval = minval_;
|
||
|
*maxval = maxval_;
|
||
|
}
|
||
|
|
||
|
template void run<uchar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
template void run<schar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
template void run<ushort>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
template void run<short >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
template void run<int >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
template void run<float >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
template void run<double>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||
|
}
|
||
|
|
||
|
#endif // CUDA_DISABLER
|