mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 22:59:16 +08:00
1041 lines
34 KiB
C++
1041 lines
34 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include <cstdio>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
|
||
|
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
|
||
|
class CV_EXPORTS SimilarRects
|
||
|
{
|
||
|
public:
|
||
|
SimilarRects(double _eps) : eps(_eps) {}
|
||
|
inline bool operator()(const Rect& r1, const Rect& r2) const
|
||
|
{
|
||
|
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
|
||
|
return std::abs(r1.x - r2.x) <= delta &&
|
||
|
std::abs(r1.y - r2.y) <= delta &&
|
||
|
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
|
||
|
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
|
||
|
}
|
||
|
double eps;
|
||
|
};
|
||
|
|
||
|
|
||
|
static void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights)
|
||
|
{
|
||
|
if( groupThreshold <= 0 || rectList.empty() )
|
||
|
{
|
||
|
if( weights )
|
||
|
{
|
||
|
size_t i, sz = rectList.size();
|
||
|
weights->resize(sz);
|
||
|
for( i = 0; i < sz; i++ )
|
||
|
(*weights)[i] = 1;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
vector<int> labels;
|
||
|
int nclasses = partition(rectList, labels, SimilarRects(eps));
|
||
|
|
||
|
vector<Rect> rrects(nclasses);
|
||
|
vector<int> rweights(nclasses, 0);
|
||
|
int i, j, nlabels = (int)labels.size();
|
||
|
for( i = 0; i < nlabels; i++ )
|
||
|
{
|
||
|
int cls = labels[i];
|
||
|
rrects[cls].x += rectList[i].x;
|
||
|
rrects[cls].y += rectList[i].y;
|
||
|
rrects[cls].width += rectList[i].width;
|
||
|
rrects[cls].height += rectList[i].height;
|
||
|
rweights[cls]++;
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < nclasses; i++ )
|
||
|
{
|
||
|
Rect r = rrects[i];
|
||
|
float s = 1.f/rweights[i];
|
||
|
rrects[i] = Rect(saturate_cast<int>(r.x*s),
|
||
|
saturate_cast<int>(r.y*s),
|
||
|
saturate_cast<int>(r.width*s),
|
||
|
saturate_cast<int>(r.height*s));
|
||
|
}
|
||
|
|
||
|
rectList.clear();
|
||
|
if( weights )
|
||
|
weights->clear();
|
||
|
|
||
|
for( i = 0; i < nclasses; i++ )
|
||
|
{
|
||
|
Rect r1 = rrects[i];
|
||
|
int n1 = rweights[i];
|
||
|
if( n1 <= groupThreshold )
|
||
|
continue;
|
||
|
// filter out small face rectangles inside large rectangles
|
||
|
for( j = 0; j < nclasses; j++ )
|
||
|
{
|
||
|
int n2 = rweights[j];
|
||
|
|
||
|
if( j == i || n2 <= groupThreshold )
|
||
|
continue;
|
||
|
Rect r2 = rrects[j];
|
||
|
|
||
|
int dx = saturate_cast<int>( r2.width * eps );
|
||
|
int dy = saturate_cast<int>( r2.height * eps );
|
||
|
|
||
|
if( i != j &&
|
||
|
r1.x >= r2.x - dx &&
|
||
|
r1.y >= r2.y - dy &&
|
||
|
r1.x + r1.width <= r2.x + r2.width + dx &&
|
||
|
r1.y + r1.height <= r2.y + r2.height + dy &&
|
||
|
(n2 > std::max(3, n1) || n1 < 3) )
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if( j == nclasses )
|
||
|
{
|
||
|
rectList.push_back(r1);
|
||
|
if( weights )
|
||
|
weights->push_back(n1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps)
|
||
|
{
|
||
|
groupRectangles(rectList, groupThreshold, eps, 0);
|
||
|
}
|
||
|
|
||
|
void groupRectangles(vector<Rect>& rectList, vector<int>& weights, int groupThreshold, double eps)
|
||
|
{
|
||
|
groupRectangles(rectList, groupThreshold, eps, &weights);
|
||
|
}
|
||
|
|
||
|
|
||
|
#define CC_CASCADE_PARAMS "cascadeParams"
|
||
|
#define CC_STAGE_TYPE "stageType"
|
||
|
#define CC_FEATURE_TYPE "featureType"
|
||
|
#define CC_HEIGHT "height"
|
||
|
#define CC_WIDTH "width"
|
||
|
|
||
|
#define CC_STAGE_NUM "stageNum"
|
||
|
#define CC_STAGES "stages"
|
||
|
#define CC_STAGE_PARAMS "stageParams"
|
||
|
|
||
|
#define CC_BOOST "BOOST"
|
||
|
#define CC_MAX_DEPTH "maxDepth"
|
||
|
#define CC_WEAK_COUNT "maxWeakCount"
|
||
|
#define CC_STAGE_THRESHOLD "stageThreshold"
|
||
|
#define CC_WEAK_CLASSIFIERS "weakClassifiers"
|
||
|
#define CC_INTERNAL_NODES "internalNodes"
|
||
|
#define CC_LEAF_VALUES "leafValues"
|
||
|
|
||
|
#define CC_FEATURES "features"
|
||
|
#define CC_FEATURE_PARAMS "featureParams"
|
||
|
#define CC_MAX_CAT_COUNT "maxCatCount"
|
||
|
|
||
|
#define CC_HAAR "HAAR"
|
||
|
#define CC_RECTS "rects"
|
||
|
#define CC_TILTED "tilted"
|
||
|
|
||
|
#define CC_LBP "LBP"
|
||
|
#define CC_RECT "rect"
|
||
|
|
||
|
#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \
|
||
|
/* (x, y) */ \
|
||
|
(p0) = sum + (rect).x + (step) * (rect).y, \
|
||
|
/* (x + w, y) */ \
|
||
|
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
|
||
|
/* (x + w, y) */ \
|
||
|
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
|
||
|
/* (x + w, y + h) */ \
|
||
|
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
|
||
|
|
||
|
#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \
|
||
|
/* (x, y) */ \
|
||
|
(p0) = tilted + (rect).x + (step) * (rect).y, \
|
||
|
/* (x - h, y + h) */ \
|
||
|
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
|
||
|
/* (x + w, y + w) */ \
|
||
|
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
|
||
|
/* (x + w - h, y + w + h) */ \
|
||
|
(p3) = tilted + (rect).x + (rect).width - (rect).height \
|
||
|
+ (step) * ((rect).y + (rect).width + (rect).height)
|
||
|
|
||
|
#define CALC_SUM_(p0, p1, p2, p3, offset) \
|
||
|
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
|
||
|
|
||
|
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
|
||
|
|
||
|
FeatureEvaluator::~FeatureEvaluator() {}
|
||
|
bool FeatureEvaluator::read(const FileNode&) {return true;}
|
||
|
Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); }
|
||
|
int FeatureEvaluator::getFeatureType() const {return -1;}
|
||
|
bool FeatureEvaluator::setImage(const Mat&, Size) {return true;}
|
||
|
bool FeatureEvaluator::setWindow(Point) { return true; }
|
||
|
double FeatureEvaluator::calcOrd(int) const { return 0.; }
|
||
|
int FeatureEvaluator::calcCat(int) const { return 0; }
|
||
|
|
||
|
//---------------------------------------------- HaarEvaluator ---------------------------------------
|
||
|
class HaarEvaluator : public FeatureEvaluator
|
||
|
{
|
||
|
public:
|
||
|
struct Feature
|
||
|
{
|
||
|
Feature();
|
||
|
|
||
|
float calc( int offset ) const;
|
||
|
void updatePtrs( const Mat& sum );
|
||
|
bool read( const FileNode& node );
|
||
|
|
||
|
bool tilted;
|
||
|
|
||
|
enum { RECT_NUM = 3 };
|
||
|
|
||
|
struct
|
||
|
{
|
||
|
Rect r;
|
||
|
float weight;
|
||
|
} rect[RECT_NUM];
|
||
|
|
||
|
const int* p[RECT_NUM][4];
|
||
|
};
|
||
|
|
||
|
HaarEvaluator();
|
||
|
virtual ~HaarEvaluator();
|
||
|
|
||
|
virtual bool read( const FileNode& node );
|
||
|
virtual Ptr<FeatureEvaluator> clone() const;
|
||
|
virtual int getFeatureType() const { return FeatureEvaluator::HAAR; }
|
||
|
|
||
|
virtual bool setImage(const Mat&, Size origWinSize);
|
||
|
virtual bool setWindow(Point pt);
|
||
|
|
||
|
double operator()(int featureIdx) const
|
||
|
{ return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; }
|
||
|
virtual double calcOrd(int featureIdx) const
|
||
|
{ return (*this)(featureIdx); }
|
||
|
private:
|
||
|
Size origWinSize;
|
||
|
Ptr<vector<Feature> > features;
|
||
|
Feature* featuresPtr; // optimization
|
||
|
bool hasTiltedFeatures;
|
||
|
|
||
|
Mat sum0, sqsum0, tilted0;
|
||
|
Mat sum, sqsum, tilted;
|
||
|
|
||
|
Rect normrect;
|
||
|
const int *p[4];
|
||
|
const double *pq[4];
|
||
|
|
||
|
int offset;
|
||
|
double varianceNormFactor;
|
||
|
};
|
||
|
|
||
|
inline HaarEvaluator::Feature :: Feature()
|
||
|
{
|
||
|
tilted = false;
|
||
|
rect[0].r = rect[1].r = rect[2].r = Rect();
|
||
|
rect[0].weight = rect[1].weight = rect[2].weight = 0;
|
||
|
p[0][0] = p[0][1] = p[0][2] = p[0][3] =
|
||
|
p[1][0] = p[1][1] = p[1][2] = p[1][3] =
|
||
|
p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0;
|
||
|
}
|
||
|
|
||
|
inline float HaarEvaluator::Feature :: calc( int offset ) const
|
||
|
{
|
||
|
float ret = rect[0].weight * CALC_SUM(p[0], offset) + rect[1].weight * CALC_SUM(p[1], offset);
|
||
|
|
||
|
if( rect[2].weight != 0.0f )
|
||
|
ret += rect[2].weight * CALC_SUM(p[2], offset);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
inline void HaarEvaluator::Feature :: updatePtrs( const Mat& sum )
|
||
|
{
|
||
|
const int* ptr = (const int*)sum.data;
|
||
|
size_t step = sum.step/sizeof(ptr[0]);
|
||
|
if (tilted)
|
||
|
{
|
||
|
CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );
|
||
|
CV_TILTED_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step );
|
||
|
if (rect[2].weight)
|
||
|
CV_TILTED_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CV_SUM_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );
|
||
|
CV_SUM_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step );
|
||
|
if (rect[2].weight)
|
||
|
CV_SUM_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool HaarEvaluator::Feature :: read( const FileNode& node )
|
||
|
{
|
||
|
FileNode rnode = node[CC_RECTS];
|
||
|
FileNodeIterator it = rnode.begin(), it_end = rnode.end();
|
||
|
|
||
|
int ri;
|
||
|
for( ri = 0; ri < RECT_NUM; ri++ )
|
||
|
{
|
||
|
rect[ri].r = Rect();
|
||
|
rect[ri].weight = 0.f;
|
||
|
}
|
||
|
|
||
|
for(ri = 0; it != it_end; ++it, ri++)
|
||
|
{
|
||
|
FileNodeIterator it2 = (*it).begin();
|
||
|
it2 >> rect[ri].r.x >> rect[ri].r.y >>
|
||
|
rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight;
|
||
|
}
|
||
|
|
||
|
tilted = (int)node[CC_TILTED] != 0;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
HaarEvaluator::HaarEvaluator()
|
||
|
{
|
||
|
features = new vector<Feature>();
|
||
|
}
|
||
|
HaarEvaluator::~HaarEvaluator()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
bool HaarEvaluator::read(const FileNode& node)
|
||
|
{
|
||
|
features->resize(node.size());
|
||
|
featuresPtr = &(*features)[0];
|
||
|
FileNodeIterator it = node.begin(), it_end = node.end();
|
||
|
hasTiltedFeatures = false;
|
||
|
|
||
|
for(int i = 0; it != it_end; ++it, i++)
|
||
|
{
|
||
|
if(!featuresPtr[i].read(*it))
|
||
|
return false;
|
||
|
if( featuresPtr[i].tilted )
|
||
|
hasTiltedFeatures = true;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Ptr<FeatureEvaluator> HaarEvaluator::clone() const
|
||
|
{
|
||
|
HaarEvaluator* ret = new HaarEvaluator;
|
||
|
ret->origWinSize = origWinSize;
|
||
|
ret->features = features;
|
||
|
ret->featuresPtr = &(*ret->features)[0];
|
||
|
ret->hasTiltedFeatures = hasTiltedFeatures;
|
||
|
ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0;
|
||
|
ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted;
|
||
|
ret->normrect = normrect;
|
||
|
memcpy( ret->p, p, 4*sizeof(p[0]) );
|
||
|
memcpy( ret->pq, pq, 4*sizeof(pq[0]) );
|
||
|
ret->offset = offset;
|
||
|
ret->varianceNormFactor = varianceNormFactor;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize )
|
||
|
{
|
||
|
int rn = image.rows+1, cn = image.cols+1;
|
||
|
origWinSize = _origWinSize;
|
||
|
normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
|
||
|
|
||
|
if (image.cols < origWinSize.width || image.rows < origWinSize.height)
|
||
|
return false;
|
||
|
|
||
|
if( sum0.rows < rn || sum0.cols < cn )
|
||
|
{
|
||
|
sum0.create(rn, cn, CV_32S);
|
||
|
sqsum0.create(rn, cn, CV_64F);
|
||
|
if (hasTiltedFeatures)
|
||
|
tilted0.create( rn, cn, CV_32S);
|
||
|
}
|
||
|
sum = Mat(rn, cn, CV_32S, sum0.data);
|
||
|
sqsum = Mat(rn, cn, CV_32S, sqsum0.data);
|
||
|
|
||
|
if( hasTiltedFeatures )
|
||
|
{
|
||
|
tilted = Mat(rn, cn, CV_32S, tilted0.data);
|
||
|
integral(image, sum, sqsum, tilted);
|
||
|
}
|
||
|
else
|
||
|
integral(image, sum, sqsum);
|
||
|
const int* sdata = (const int*)sum.data;
|
||
|
const double* sqdata = (const double*)sqsum.data;
|
||
|
size_t sumStep = sum.step/sizeof(sdata[0]);
|
||
|
size_t sqsumStep = sqsum.step/sizeof(sqdata[0]);
|
||
|
|
||
|
CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep );
|
||
|
CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep );
|
||
|
|
||
|
size_t fi, nfeatures = features->size();
|
||
|
|
||
|
for( fi = 0; fi < nfeatures; fi++ )
|
||
|
featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool HaarEvaluator::setWindow( Point pt )
|
||
|
{
|
||
|
if( pt.x < 0 || pt.y < 0 ||
|
||
|
pt.x + origWinSize.width >= sum.cols-2 ||
|
||
|
pt.y + origWinSize.height >= sum.rows-2 )
|
||
|
return false;
|
||
|
|
||
|
size_t pOffset = pt.y * (sum.step/sizeof(int)) + pt.x;
|
||
|
size_t pqOffset = pt.y * (sqsum.step/sizeof(double)) + pt.x;
|
||
|
int valsum = CALC_SUM(p, pOffset);
|
||
|
double valsqsum = CALC_SUM(pq, pqOffset);
|
||
|
|
||
|
double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
|
||
|
if( nf > 0. )
|
||
|
nf = sqrt(nf);
|
||
|
else
|
||
|
nf = 1.;
|
||
|
varianceNormFactor = 1./nf;
|
||
|
offset = (int)pOffset;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------------- LBPEvaluator -------------------------------------
|
||
|
|
||
|
class LBPEvaluator : public FeatureEvaluator
|
||
|
{
|
||
|
public:
|
||
|
struct Feature
|
||
|
{
|
||
|
Feature();
|
||
|
Feature( int x, int y, int _block_w, int _block_h ) :
|
||
|
rect(x, y, _block_w, _block_h) {}
|
||
|
|
||
|
int calc( int offset ) const;
|
||
|
void updatePtrs( const Mat& sum );
|
||
|
bool read(const FileNode& node );
|
||
|
|
||
|
Rect rect; // weight and height for block
|
||
|
const int* p[16]; // fast
|
||
|
};
|
||
|
|
||
|
LBPEvaluator();
|
||
|
virtual ~LBPEvaluator();
|
||
|
|
||
|
virtual bool read( const FileNode& node );
|
||
|
virtual Ptr<FeatureEvaluator> clone() const;
|
||
|
virtual int getFeatureType() const { return FeatureEvaluator::LBP; }
|
||
|
|
||
|
virtual bool setImage(const Mat& image, Size _origWinSize);
|
||
|
virtual bool setWindow(Point pt);
|
||
|
|
||
|
int operator()(int featureIdx) const
|
||
|
{ return featuresPtr[featureIdx].calc(offset); }
|
||
|
virtual int calcCat(int featureIdx) const
|
||
|
{ return (*this)(featureIdx); }
|
||
|
private:
|
||
|
Size origWinSize;
|
||
|
Ptr<vector<Feature> > features;
|
||
|
Feature* featuresPtr; // optimization
|
||
|
Mat sum0, sum;
|
||
|
Rect normrect;
|
||
|
|
||
|
int offset;
|
||
|
};
|
||
|
|
||
|
|
||
|
inline LBPEvaluator::Feature :: Feature()
|
||
|
{
|
||
|
rect = Rect();
|
||
|
for( int i = 0; i < 16; i++ )
|
||
|
p[i] = 0;
|
||
|
}
|
||
|
|
||
|
inline int LBPEvaluator::Feature :: calc( int offset ) const
|
||
|
{
|
||
|
int cval = CALC_SUM_( p[5], p[6], p[9], p[10], offset );
|
||
|
|
||
|
return (CALC_SUM_( p[0], p[1], p[4], p[5], offset ) >= cval ? 128 : 0) | // 0
|
||
|
(CALC_SUM_( p[1], p[2], p[5], p[6], offset ) >= cval ? 64 : 0) | // 1
|
||
|
(CALC_SUM_( p[2], p[3], p[6], p[7], offset ) >= cval ? 32 : 0) | // 2
|
||
|
(CALC_SUM_( p[6], p[7], p[10], p[11], offset ) >= cval ? 16 : 0) | // 5
|
||
|
(CALC_SUM_( p[10], p[11], p[14], p[15], offset ) >= cval ? 8 : 0)| // 8
|
||
|
(CALC_SUM_( p[9], p[10], p[13], p[14], offset ) >= cval ? 4 : 0)| // 7
|
||
|
(CALC_SUM_( p[8], p[9], p[12], p[13], offset ) >= cval ? 2 : 0)| // 6
|
||
|
(CALC_SUM_( p[4], p[5], p[8], p[9], offset ) >= cval ? 1 : 0);
|
||
|
}
|
||
|
|
||
|
inline void LBPEvaluator::Feature :: updatePtrs( const Mat& sum )
|
||
|
{
|
||
|
const int* ptr = (const int*)sum.data;
|
||
|
size_t step = sum.step/sizeof(ptr[0]);
|
||
|
Rect tr = rect;
|
||
|
CV_SUM_PTRS( p[0], p[1], p[4], p[5], ptr, tr, step );
|
||
|
tr.x += 2*rect.width;
|
||
|
CV_SUM_PTRS( p[2], p[3], p[6], p[7], ptr, tr, step );
|
||
|
tr.y += 2*rect.height;
|
||
|
CV_SUM_PTRS( p[10], p[11], p[14], p[15], ptr, tr, step );
|
||
|
tr.x -= 2*rect.width;
|
||
|
CV_SUM_PTRS( p[8], p[9], p[12], p[13], ptr, tr, step );
|
||
|
}
|
||
|
|
||
|
bool LBPEvaluator::Feature :: read(const FileNode& node )
|
||
|
{
|
||
|
FileNode rnode = node[CC_RECT];
|
||
|
FileNodeIterator it = rnode.begin();
|
||
|
it >> rect.x >> rect.y >> rect.width >> rect.height;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
LBPEvaluator::LBPEvaluator()
|
||
|
{
|
||
|
features = new vector<Feature>();
|
||
|
}
|
||
|
LBPEvaluator::~LBPEvaluator()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
bool LBPEvaluator::read( const FileNode& node )
|
||
|
{
|
||
|
features->resize(node.size());
|
||
|
featuresPtr = &(*features)[0];
|
||
|
FileNodeIterator it = node.begin(), it_end = node.end();
|
||
|
for(int i = 0; it != it_end; ++it, i++)
|
||
|
{
|
||
|
if(!featuresPtr[i].read(*it))
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Ptr<FeatureEvaluator> LBPEvaluator::clone() const
|
||
|
{
|
||
|
LBPEvaluator* ret = new LBPEvaluator;
|
||
|
ret->origWinSize = origWinSize;
|
||
|
ret->features = features;
|
||
|
ret->featuresPtr = &(*ret->features)[0];
|
||
|
ret->sum0 = sum0, ret->sum = sum;
|
||
|
ret->normrect = normrect;
|
||
|
ret->offset = offset;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
bool LBPEvaluator::setImage( const Mat& image, Size _origWinSize )
|
||
|
{
|
||
|
int rn = image.rows+1, cn = image.cols+1;
|
||
|
origWinSize = _origWinSize;
|
||
|
|
||
|
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
|
||
|
return false;
|
||
|
|
||
|
if( sum0.rows < rn || sum0.cols < cn )
|
||
|
sum0.create(rn, cn, CV_32S);
|
||
|
sum = Mat(rn, cn, CV_32S, sum0.data);
|
||
|
integral(image, sum);
|
||
|
|
||
|
size_t fi, nfeatures = features->size();
|
||
|
|
||
|
for( fi = 0; fi < nfeatures; fi++ )
|
||
|
featuresPtr[fi].updatePtrs( sum );
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool LBPEvaluator::setWindow( Point pt )
|
||
|
{
|
||
|
if( pt.x < 0 || pt.y < 0 ||
|
||
|
pt.x + origWinSize.width >= sum.cols-2 ||
|
||
|
pt.y + origWinSize.height >= sum.rows-2 )
|
||
|
return false;
|
||
|
offset = pt.y * ((int)sum.step/sizeof(int)) + pt.x;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Ptr<FeatureEvaluator> FeatureEvaluator::create(int featureType)
|
||
|
{
|
||
|
return featureType == HAAR ? Ptr<FeatureEvaluator>(new HaarEvaluator) :
|
||
|
featureType == LBP ? Ptr<FeatureEvaluator>(new LBPEvaluator) : Ptr<FeatureEvaluator>();
|
||
|
}
|
||
|
|
||
|
//---------------------------------------- Classifier Cascade --------------------------------------------
|
||
|
|
||
|
CascadeClassifier::CascadeClassifier()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
CascadeClassifier::CascadeClassifier(const string& filename)
|
||
|
{ load(filename); }
|
||
|
|
||
|
CascadeClassifier::~CascadeClassifier()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
bool CascadeClassifier::empty() const
|
||
|
{
|
||
|
return oldCascade.empty() && stages.empty();
|
||
|
}
|
||
|
|
||
|
bool CascadeClassifier::load(const string& filename)
|
||
|
{
|
||
|
oldCascade.release();
|
||
|
|
||
|
FileStorage fs(filename, FileStorage::READ);
|
||
|
if( !fs.isOpened() )
|
||
|
return false;
|
||
|
|
||
|
if( read(fs.getFirstTopLevelNode()) )
|
||
|
return true;
|
||
|
|
||
|
fs.release();
|
||
|
|
||
|
oldCascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
|
||
|
return !oldCascade.empty();
|
||
|
}
|
||
|
|
||
|
template<class FEval>
|
||
|
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||
|
{
|
||
|
int si, nstages = (int)cascade.stages.size();
|
||
|
int nodeOfs = 0, leafOfs = 0;
|
||
|
FEval& feval = (FEval&)*_feval;
|
||
|
float* cascadeLeaves = &cascade.leaves[0];
|
||
|
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||
|
CascadeClassifier::DTree* cascadeWeaks = &cascade.classifiers[0];
|
||
|
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||
|
|
||
|
for( si = 0; si < nstages; si++ )
|
||
|
{
|
||
|
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||
|
int wi, ntrees = stage.ntrees;
|
||
|
double sum = 0;
|
||
|
|
||
|
for( wi = 0; wi < ntrees; wi++ )
|
||
|
{
|
||
|
CascadeClassifier::DTree& weak = cascadeWeaks[stage.first + wi];
|
||
|
int idx = 0, root = nodeOfs;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
CascadeClassifier::DTreeNode& node = cascadeNodes[root + idx];
|
||
|
double val = feval(node.featureIdx);
|
||
|
idx = val < node.threshold ? node.left : node.right;
|
||
|
}
|
||
|
while( idx > 0 );
|
||
|
sum += cascadeLeaves[leafOfs - idx];
|
||
|
nodeOfs += weak.nodeCount;
|
||
|
leafOfs += weak.nodeCount + 1;
|
||
|
}
|
||
|
if( sum < stage.threshold )
|
||
|
return -si;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
template<class FEval>
|
||
|
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||
|
{
|
||
|
int si, nstages = (int)cascade.stages.size();
|
||
|
int nodeOfs = 0, leafOfs = 0;
|
||
|
FEval& feval = (FEval&)*_feval;
|
||
|
size_t subsetSize = (cascade.ncategories + 31)/32;
|
||
|
int* cascadeSubsets = &cascade.subsets[0];
|
||
|
float* cascadeLeaves = &cascade.leaves[0];
|
||
|
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||
|
CascadeClassifier::DTree* cascadeWeaks = &cascade.classifiers[0];
|
||
|
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||
|
|
||
|
for( si = 0; si < nstages; si++ )
|
||
|
{
|
||
|
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||
|
int wi, ntrees = stage.ntrees;
|
||
|
double sum = 0;
|
||
|
|
||
|
for( wi = 0; wi < ntrees; wi++ )
|
||
|
{
|
||
|
CascadeClassifier::DTree& weak = cascadeWeaks[stage.first + wi];
|
||
|
int idx = 0, root = nodeOfs;
|
||
|
do
|
||
|
{
|
||
|
CascadeClassifier::DTreeNode& node = cascadeNodes[root + idx];
|
||
|
int c = feval(node.featureIdx);
|
||
|
const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
|
||
|
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
|
||
|
}
|
||
|
while( idx > 0 );
|
||
|
sum += cascadeLeaves[leafOfs - idx];
|
||
|
nodeOfs += weak.nodeCount;
|
||
|
leafOfs += weak.nodeCount + 1;
|
||
|
}
|
||
|
if( sum < stage.threshold )
|
||
|
return -si;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
template<class FEval>
|
||
|
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||
|
{
|
||
|
int si, nstages = (int)cascade.stages.size();
|
||
|
int nodeOfs = 0, leafOfs = 0;
|
||
|
FEval& feval = (FEval&)*_feval;
|
||
|
float* cascadeLeaves = &cascade.leaves[0];
|
||
|
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||
|
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||
|
for( si = 0; si < nstages; si++ )
|
||
|
{
|
||
|
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||
|
int wi, ntrees = stage.ntrees;
|
||
|
double sum = 0;
|
||
|
for( wi = 0; wi < ntrees; wi++, nodeOfs++, leafOfs+= 2 )
|
||
|
{
|
||
|
CascadeClassifier::DTreeNode& node = cascadeNodes[nodeOfs];
|
||
|
double val = feval(node.featureIdx);
|
||
|
sum += cascadeLeaves[ val < node.threshold ? leafOfs : leafOfs+1 ];
|
||
|
}
|
||
|
if( sum < stage.threshold )
|
||
|
return -si;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
template<class FEval>
|
||
|
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_feval )
|
||
|
{
|
||
|
int si, nstages = (int)cascade.stages.size();
|
||
|
int nodeOfs = 0, leafOfs = 0;
|
||
|
FEval& feval = (FEval&)*_feval;
|
||
|
size_t subsetSize = (cascade.ncategories + 31)/32;
|
||
|
int* cascadeSubsets = &cascade.subsets[0];
|
||
|
float* cascadeLeaves = &cascade.leaves[0];
|
||
|
CascadeClassifier::DTreeNode* cascadeNodes = &cascade.nodes[0];
|
||
|
CascadeClassifier::Stage* cascadeStages = &cascade.stages[0];
|
||
|
|
||
|
for( si = 0; si < nstages; si++ )
|
||
|
{
|
||
|
CascadeClassifier::Stage& stage = cascadeStages[si];
|
||
|
int wi, ntrees = stage.ntrees;
|
||
|
double sum = 0;
|
||
|
|
||
|
for( wi = 0; wi < ntrees; wi++ )
|
||
|
{
|
||
|
CascadeClassifier::DTreeNode& node = cascadeNodes[nodeOfs];
|
||
|
int c = feval(node.featureIdx);
|
||
|
const int* subset = &cascadeSubsets[nodeOfs*subsetSize];
|
||
|
sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
|
||
|
nodeOfs++;
|
||
|
leafOfs += 2;
|
||
|
}
|
||
|
if( sum < stage.threshold )
|
||
|
return -si;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int CascadeClassifier::runAt( Ptr<FeatureEvaluator> &_feval, Point pt )
|
||
|
{
|
||
|
CV_Assert( oldCascade.empty() );
|
||
|
/*if( !oldCascade.empty() )
|
||
|
return cvRunHaarClassifierCascade(oldCascade, pt, 0);*/
|
||
|
|
||
|
assert(featureType == FeatureEvaluator::HAAR ||
|
||
|
featureType == FeatureEvaluator::LBP);
|
||
|
return !_feval->setWindow(pt) ? -1 :
|
||
|
is_stump_based ? ( featureType == FeatureEvaluator::HAAR ?
|
||
|
predictOrderedStump<HaarEvaluator>( *this, _feval ) :
|
||
|
predictCategoricalStump<LBPEvaluator>( *this, _feval ) ) :
|
||
|
( featureType == FeatureEvaluator::HAAR ?
|
||
|
predictOrdered<HaarEvaluator>( *this, _feval ) :
|
||
|
predictCategorical<LBPEvaluator>( *this, _feval ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator> &_feval, const Mat& image )
|
||
|
{
|
||
|
/*if( !oldCascade.empty() )
|
||
|
{
|
||
|
Mat sum(image.rows+1, image.cols+1, CV_32S);
|
||
|
Mat tilted(image.rows+1, image.cols+1, CV_32S);
|
||
|
Mat sqsum(image.rows+1, image.cols+1, CV_64F);
|
||
|
integral(image, sum, sqsum, tilted);
|
||
|
CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;
|
||
|
cvSetImagesForHaarClassifierCascade( oldCascade, &_sum, &_sqsum, &_tilted, 1. );
|
||
|
return true;
|
||
|
}*/
|
||
|
return empty() ? false : _feval->setImage(image, origWinSize );
|
||
|
}
|
||
|
|
||
|
|
||
|
struct CascadeClassifierInvoker
|
||
|
{
|
||
|
CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor, ConcurrentRectVector& _vec )
|
||
|
{
|
||
|
cc = &_cc;
|
||
|
sz1 = _sz1;
|
||
|
stripSize = _stripSize;
|
||
|
yStep = _yStep;
|
||
|
factor = _factor;
|
||
|
vec = &_vec;
|
||
|
}
|
||
|
|
||
|
void operator()(const BlockedRange& range) const
|
||
|
{
|
||
|
Ptr<FeatureEvaluator> feval = cc->feval->clone();
|
||
|
int y1 = range.begin()*stripSize, y2 = min(range.end()*stripSize, sz1.height);
|
||
|
Size winSize(cvRound(cc->origWinSize.width*factor), cvRound(cc->origWinSize.height*factor));
|
||
|
|
||
|
for( int y = y1; y < y2; y += yStep )
|
||
|
for( int x = 0; x < sz1.width; x += yStep )
|
||
|
{
|
||
|
int r = cc->runAt(feval, Point(x, y));
|
||
|
if( r > 0 )
|
||
|
vec->push_back(Rect(cvRound(x*factor), cvRound(y*factor),
|
||
|
winSize.width, winSize.height));
|
||
|
if( r == 0 )
|
||
|
x += yStep;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CascadeClassifier* cc;
|
||
|
Size sz1;
|
||
|
int stripSize, yStep;
|
||
|
double factor;
|
||
|
ConcurrentRectVector* vec;
|
||
|
};
|
||
|
|
||
|
|
||
|
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
||
|
|
||
|
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
|
||
|
double scaleFactor, int minNeighbors,
|
||
|
int flags, Size minSize )
|
||
|
{
|
||
|
const double GROUP_EPS = 0.2;
|
||
|
|
||
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
|
||
|
|
||
|
if( empty() )
|
||
|
return;
|
||
|
|
||
|
if( !oldCascade.empty() )
|
||
|
{
|
||
|
MemStorage storage(cvCreateMemStorage(0));
|
||
|
CvMat _image = image;
|
||
|
CvSeq* _objects = cvHaarDetectObjects( &_image, oldCascade, storage, scaleFactor,
|
||
|
minNeighbors, flags, minSize );
|
||
|
vector<CvAvgComp> vecAvgComp;
|
||
|
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||
|
objects.resize(vecAvgComp.size());
|
||
|
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
objects.clear();
|
||
|
|
||
|
Mat img = image, imgbuf(image.rows+1, image.cols+1, CV_8U);
|
||
|
|
||
|
if( img.channels() > 1 )
|
||
|
{
|
||
|
Mat temp;
|
||
|
cvtColor(img, temp, CV_BGR2GRAY);
|
||
|
img = temp;
|
||
|
}
|
||
|
|
||
|
ConcurrentRectVector allCandidates;
|
||
|
|
||
|
for( double factor = 1; ; factor *= scaleFactor )
|
||
|
{
|
||
|
int stripCount, stripSize;
|
||
|
Size winSize( cvRound(origWinSize.width*factor), cvRound(origWinSize.height*factor) );
|
||
|
Size sz( cvRound( img.cols/factor ), cvRound( img.rows/factor ) );
|
||
|
Size sz1( sz.width - origWinSize.width, sz.height - origWinSize.height );
|
||
|
|
||
|
if( sz1.width <= 0 || sz1.height <= 0 )
|
||
|
break;
|
||
|
if( winSize.width < minSize.width || winSize.height < minSize.height )
|
||
|
continue;
|
||
|
|
||
|
int yStep = factor > 2. ? 1 : 2;
|
||
|
#ifdef HAVE_TBB
|
||
|
const int PTS_PER_THREAD = 100;
|
||
|
stripCount = max(((sz1.height*sz1.width)/(yStep*yStep) + PTS_PER_THREAD/2)/PTS_PER_THREAD, 1);
|
||
|
stripSize = (sz1.height + stripCount - 1)/stripCount;
|
||
|
stripSize = (stripSize/yStep)*yStep;
|
||
|
#else
|
||
|
stripCount = 1;
|
||
|
stripSize = sz1.height;
|
||
|
#endif
|
||
|
|
||
|
Mat img1( sz, CV_8U, imgbuf.data );
|
||
|
resize( img, img1, sz, 0, 0, CV_INTER_LINEAR );
|
||
|
if( !feval->setImage( img1, origWinSize ) )
|
||
|
break;
|
||
|
|
||
|
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker(*this, sz1, stripSize, yStep, factor, allCandidates));
|
||
|
}
|
||
|
|
||
|
objects.resize(allCandidates.size());
|
||
|
std::copy(allCandidates.begin(), allCandidates.end(), objects.begin());
|
||
|
groupRectangles( objects, minNeighbors, GROUP_EPS );
|
||
|
}
|
||
|
|
||
|
|
||
|
bool CascadeClassifier::read(const FileNode& root)
|
||
|
{
|
||
|
// load stage params
|
||
|
string stageTypeStr = (string)root[CC_STAGE_TYPE];
|
||
|
if( stageTypeStr == CC_BOOST )
|
||
|
stageType = BOOST;
|
||
|
else
|
||
|
return false;
|
||
|
|
||
|
string featureTypeStr = (string)root[CC_FEATURE_TYPE];
|
||
|
if( featureTypeStr == CC_HAAR )
|
||
|
featureType = FeatureEvaluator::HAAR;
|
||
|
else if( featureTypeStr == CC_LBP )
|
||
|
featureType = FeatureEvaluator::LBP;
|
||
|
else
|
||
|
return false;
|
||
|
|
||
|
origWinSize.width = (int)root[CC_WIDTH];
|
||
|
origWinSize.height = (int)root[CC_HEIGHT];
|
||
|
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
|
||
|
|
||
|
is_stump_based = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
|
||
|
|
||
|
// load feature params
|
||
|
FileNode fn = root[CC_FEATURE_PARAMS];
|
||
|
if( fn.empty() )
|
||
|
return false;
|
||
|
|
||
|
ncategories = fn[CC_MAX_CAT_COUNT];
|
||
|
int subsetSize = (ncategories + 31)/32,
|
||
|
nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
|
||
|
|
||
|
// load stages
|
||
|
fn = root[CC_STAGES];
|
||
|
if( fn.empty() )
|
||
|
return false;
|
||
|
|
||
|
stages.reserve(fn.size());
|
||
|
classifiers.clear();
|
||
|
nodes.clear();
|
||
|
|
||
|
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||
|
|
||
|
for( int si = 0; it != it_end; si++, ++it )
|
||
|
{
|
||
|
FileNode fns = *it;
|
||
|
Stage stage;
|
||
|
stage.threshold = fns[CC_STAGE_THRESHOLD];
|
||
|
fns = fns[CC_WEAK_CLASSIFIERS];
|
||
|
if(fns.empty())
|
||
|
return false;
|
||
|
stage.ntrees = (int)fns.size();
|
||
|
stage.first = (int)classifiers.size();
|
||
|
stages.push_back(stage);
|
||
|
classifiers.reserve(stages[si].first + stages[si].ntrees);
|
||
|
|
||
|
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
|
||
|
for( ; it1 != it1_end; ++it1 ) // weak trees
|
||
|
{
|
||
|
FileNode fnw = *it1;
|
||
|
FileNode internalNodes = fnw[CC_INTERNAL_NODES];
|
||
|
FileNode leafValues = fnw[CC_LEAF_VALUES];
|
||
|
if( internalNodes.empty() || leafValues.empty() )
|
||
|
return false;
|
||
|
DTree tree;
|
||
|
tree.nodeCount = (int)internalNodes.size()/nodeStep;
|
||
|
classifiers.push_back(tree);
|
||
|
|
||
|
nodes.reserve(nodes.size() + tree.nodeCount);
|
||
|
leaves.reserve(leaves.size() + leafValues.size());
|
||
|
if( subsetSize > 0 )
|
||
|
subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
|
||
|
|
||
|
FileNodeIterator it2 = internalNodes.begin(), it2_end = internalNodes.end();
|
||
|
|
||
|
for( ; it2 != it2_end; ) // nodes
|
||
|
{
|
||
|
DTreeNode node;
|
||
|
node.left = (int)*it2; ++it2;
|
||
|
node.right = (int)*it2; ++it2;
|
||
|
node.featureIdx = (int)*it2; ++it2;
|
||
|
if( subsetSize > 0 )
|
||
|
{
|
||
|
for( int j = 0; j < subsetSize; j++, ++it2 )
|
||
|
subsets.push_back((int)*it2);
|
||
|
node.threshold = 0.f;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
node.threshold = (float)*it2; ++it2;
|
||
|
}
|
||
|
nodes.push_back(node);
|
||
|
}
|
||
|
|
||
|
it2 = leafValues.begin(), it2_end = leafValues.end();
|
||
|
|
||
|
for( ; it2 != it2_end; ++it2 ) // leaves
|
||
|
leaves.push_back((float)*it2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// load features
|
||
|
feval = FeatureEvaluator::create(featureType);
|
||
|
fn = root[CC_FEATURES];
|
||
|
if( fn.empty() )
|
||
|
return false;
|
||
|
|
||
|
return feval->read(fn);
|
||
|
}
|
||
|
|
||
|
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
|
||
|
{ cvReleaseHaarClassifierCascade(&obj); }
|
||
|
|
||
|
} // namespace cv
|
||
|
|
||
|
/* End of file. */
|
||
|
|