opencv/modules/dnn/src/layers/concat_layer.cpp

227 lines
8.1 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
namespace cv
{
namespace dnn
{
class ConcatLayerImpl : public ConcatLayer
{
public:
ConcatLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
axis = params.get<int>("axis", 1);
}
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size() > 0);
outputs.clear();
outputs.push_back(inputs[0]);
int cAxis = clamp(axis, inputs[0]);
int axisSum = 0;
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape curShape = inputs[i];
CV_Assert(curShape.size() == outputs.back().size());
for (int curAxis = 0; curAxis < outputs.back().size(); curAxis++)
{
if (curAxis != cAxis && outputs.back()[curAxis] != curShape[curAxis])
CV_Error(Error::StsBadSize, "Inconsitent shape for ConcatLayer");
}
axisSum += curShape[cAxis];
}
outputs.back()[cAxis] = axisSum;
return false;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1; // By channels
}
class ChannelConcatInvoker : public ParallelLoopBody
{
public:
std::vector<Mat*>* inputs;
Mat* output;
int nstripes;
std::vector<const float*> chptrs;
static void run(std::vector<Mat*>& inputs, Mat& output, int nstripes)
{
ChannelConcatInvoker cc;
cc.inputs = &inputs;
cc.output = &output;
cc.nstripes = nstripes;
size_t i, ninputs = inputs.size();
int nchannels = 0, batchsz = output.size[0];
for( i = 0; i < ninputs; i++ )
{
Mat& inp = *inputs[i];
CV_Assert( inp.isContinuous() && inp.type() == CV_32F &&
inp.dims == 4 && inp.size[0] == output.size[0] &&
inp.size[2] == output.size[2] &&
inp.size[3] == output.size[3] );
nchannels += inp.size[1];
}
CV_Assert( nchannels == output.size[1] );
CV_Assert( output.isContinuous() && output.type() == CV_32F );
cc.chptrs.resize(nchannels*batchsz);
int ofs = 0;
for( i = 0; i < ninputs; i++)
{
Mat& inp = *inputs[i];
for( int j = 0; j < batchsz; j++ )
for( int k = 0; k < inp.size[1]; k++ )
{
const float* ptr = inp.ptr<float>(j, k);
cc.chptrs[ofs + j*nchannels + k] = ptr;
}
ofs += inp.size[1];
}
parallel_for_(Range(0, nstripes), cc, nstripes);
}
ChannelConcatInvoker() {}
void operator()(const Range& r) const
{
size_t planeSize = (size_t)output->size[2]*output->size[3];
size_t nch = chptrs.size();
size_t total = nch*planeSize;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(total, r.end*stripeSize);
const float** ptrs = (const float**)&chptrs[0];
float* outptr = output->ptr<float>();
size_t blockSize0 = 1 << 16;
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ch = ofs0/planeSize;
size_t ofs = ofs0 - ch*planeSize;
size_t blockSize = std::min(blockSize0, planeSize - ofs);
memcpy(outptr + ofs0, ptrs[ch] + ofs, blockSize*sizeof(outptr[0]));
ofs0 += blockSize;
}
}
};
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
int cAxis = clamp(axis, inputs[0]->dims);
Mat& outMat = outputs[0];
if( cAxis == 1 && outMat.dims == 4 )
{
int nstripes = getNumThreads();
ChannelConcatInvoker::run(inputs, outMat, nstripes);
}
else
{
std::vector<Range> ranges(outputs[0].dims, Range::all());
ranges[cAxis].start = 0;
for (size_t i = 0; i < inputs.size(); i++)
{
ranges[cAxis].end = ranges[cAxis].start + inputs[i]->size[cAxis];
inputs[i]->copyTo(outMat(&ranges[0]));
ranges[cAxis].start = ranges[cAxis].end;
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input)
{
#ifdef HAVE_HALIDE
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
int offset = inputBuffers[0].channels();
Halide::Expr topExpr = select(c < offset,
inputBuffers[0](x, y, c, n),
inputBuffers[1](x, y, c - offset, n));
for (int i = 2; i < input.size(); ++i)
{
offset += inputBuffers[i - 1].channels();
topExpr = select(c < offset, topExpr,
inputBuffers[i](x, y, c - offset, n));
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
};
Ptr<ConcatLayer> ConcatLayer::create(const LayerParams& params)
{
return Ptr<ConcatLayer>(new ConcatLayerImpl(params));
}
}
}