2018-02-06 20:02:51 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
2015-12-03 19:43:37 +08:00
|
|
|
|
|
|
|
#include "precomp.hpp"
|
2018-02-06 20:02:51 +08:00
|
|
|
#include "opencl_kernels_core.hpp"
|
2015-12-03 19:43:37 +08:00
|
|
|
|
|
|
|
namespace cv { namespace hal {
|
|
|
|
|
|
|
|
#if CV_NEON
|
|
|
|
template<typename T> struct VSplit2;
|
|
|
|
template<typename T> struct VSplit3;
|
|
|
|
template<typename T> struct VSplit4;
|
|
|
|
|
|
|
|
#define SPLIT2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
|
|
|
template<> \
|
|
|
|
struct name<data_type> \
|
|
|
|
{ \
|
|
|
|
void operator()(const data_type* src, data_type* dst0, \
|
|
|
|
data_type* dst1) const \
|
|
|
|
{ \
|
|
|
|
reg_type r = load_func(src); \
|
|
|
|
store_func(dst0, r.val[0]); \
|
|
|
|
store_func(dst1, r.val[1]); \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SPLIT3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
|
|
|
template<> \
|
|
|
|
struct name<data_type> \
|
|
|
|
{ \
|
|
|
|
void operator()(const data_type* src, data_type* dst0, data_type* dst1, \
|
|
|
|
data_type* dst2) const \
|
|
|
|
{ \
|
|
|
|
reg_type r = load_func(src); \
|
|
|
|
store_func(dst0, r.val[0]); \
|
|
|
|
store_func(dst1, r.val[1]); \
|
|
|
|
store_func(dst2, r.val[2]); \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SPLIT4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \
|
|
|
|
template<> \
|
|
|
|
struct name<data_type> \
|
|
|
|
{ \
|
|
|
|
void operator()(const data_type* src, data_type* dst0, data_type* dst1, \
|
|
|
|
data_type* dst2, data_type* dst3) const \
|
|
|
|
{ \
|
|
|
|
reg_type r = load_func(src); \
|
|
|
|
store_func(dst0, r.val[0]); \
|
|
|
|
store_func(dst1, r.val[1]); \
|
|
|
|
store_func(dst2, r.val[2]); \
|
|
|
|
store_func(dst3, r.val[3]); \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
SPLIT2_KERNEL_TEMPLATE(VSplit2, uchar , uint8x16x2_t, vld2q_u8 , vst1q_u8 );
|
|
|
|
SPLIT2_KERNEL_TEMPLATE(VSplit2, ushort, uint16x8x2_t, vld2q_u16, vst1q_u16);
|
|
|
|
SPLIT2_KERNEL_TEMPLATE(VSplit2, int , int32x4x2_t, vld2q_s32, vst1q_s32);
|
|
|
|
SPLIT2_KERNEL_TEMPLATE(VSplit2, int64 , int64x1x2_t, vld2_s64 , vst1_s64 );
|
|
|
|
|
|
|
|
SPLIT3_KERNEL_TEMPLATE(VSplit3, uchar , uint8x16x3_t, vld3q_u8 , vst1q_u8 );
|
|
|
|
SPLIT3_KERNEL_TEMPLATE(VSplit3, ushort, uint16x8x3_t, vld3q_u16, vst1q_u16);
|
|
|
|
SPLIT3_KERNEL_TEMPLATE(VSplit3, int , int32x4x3_t, vld3q_s32, vst1q_s32);
|
|
|
|
SPLIT3_KERNEL_TEMPLATE(VSplit3, int64 , int64x1x3_t, vld3_s64 , vst1_s64 );
|
|
|
|
|
|
|
|
SPLIT4_KERNEL_TEMPLATE(VSplit4, uchar , uint8x16x4_t, vld4q_u8 , vst1q_u8 );
|
|
|
|
SPLIT4_KERNEL_TEMPLATE(VSplit4, ushort, uint16x8x4_t, vld4q_u16, vst1q_u16);
|
|
|
|
SPLIT4_KERNEL_TEMPLATE(VSplit4, int , int32x4x4_t, vld4q_s32, vst1q_s32);
|
|
|
|
SPLIT4_KERNEL_TEMPLATE(VSplit4, int64 , int64x1x4_t, vld4_s64 , vst1_s64 );
|
|
|
|
|
|
|
|
#elif CV_SSE2
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct VSplit2
|
|
|
|
{
|
|
|
|
VSplit2() : support(false) { }
|
|
|
|
void operator()(const T *, T *, T *) const { }
|
|
|
|
|
|
|
|
bool support;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct VSplit3
|
|
|
|
{
|
|
|
|
VSplit3() : support(false) { }
|
|
|
|
void operator()(const T *, T *, T *, T *) const { }
|
|
|
|
|
|
|
|
bool support;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct VSplit4
|
|
|
|
{
|
|
|
|
VSplit4() : support(false) { }
|
|
|
|
void operator()(const T *, T *, T *, T *, T *) const { }
|
|
|
|
|
|
|
|
bool support;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define SPLIT2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
|
|
|
|
template <> \
|
|
|
|
struct VSplit2<data_type> \
|
|
|
|
{ \
|
|
|
|
enum \
|
|
|
|
{ \
|
|
|
|
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
|
|
|
}; \
|
|
|
|
\
|
|
|
|
VSplit2() \
|
|
|
|
{ \
|
|
|
|
support = checkHardwareSupport(CV_CPU_SSE2); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
void operator()(const data_type * src, \
|
|
|
|
data_type * dst0, data_type * dst1) const \
|
|
|
|
{ \
|
|
|
|
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
|
|
|
|
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
|
|
|
|
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
|
|
|
|
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
|
|
|
|
\
|
|
|
|
_mm_deinterleave(v_src0, v_src1, v_src2, v_src3); \
|
|
|
|
\
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
bool support; \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SPLIT3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
|
|
|
|
template <> \
|
|
|
|
struct VSplit3<data_type> \
|
|
|
|
{ \
|
|
|
|
enum \
|
|
|
|
{ \
|
|
|
|
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
|
|
|
}; \
|
|
|
|
\
|
|
|
|
VSplit3() \
|
|
|
|
{ \
|
|
|
|
support = checkHardwareSupport(CV_CPU_SSE2); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
void operator()(const data_type * src, \
|
|
|
|
data_type * dst0, data_type * dst1, data_type * dst2) const \
|
|
|
|
{ \
|
|
|
|
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
|
|
|
|
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
|
|
|
|
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
|
|
|
|
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
|
|
|
|
reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
|
|
|
|
reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
|
|
|
|
\
|
|
|
|
_mm_deinterleave(v_src0, v_src1, v_src2, \
|
|
|
|
v_src3, v_src4, v_src5); \
|
|
|
|
\
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst2), v_src4); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
bool support; \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SPLIT4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \
|
|
|
|
template <> \
|
|
|
|
struct VSplit4<data_type> \
|
|
|
|
{ \
|
|
|
|
enum \
|
|
|
|
{ \
|
|
|
|
ELEMS_IN_VEC = 16 / sizeof(data_type) \
|
|
|
|
}; \
|
|
|
|
\
|
|
|
|
VSplit4() \
|
|
|
|
{ \
|
|
|
|
support = checkHardwareSupport(CV_CPU_SSE2); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
void operator()(const data_type * src, data_type * dst0, data_type * dst1, \
|
|
|
|
data_type * dst2, data_type * dst3) const \
|
|
|
|
{ \
|
|
|
|
reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \
|
|
|
|
reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \
|
|
|
|
reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
|
|
|
|
reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
|
|
|
|
reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
|
|
|
|
reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
|
|
|
|
reg_type v_src6 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 6)); \
|
|
|
|
reg_type v_src7 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 7)); \
|
|
|
|
\
|
|
|
|
_mm_deinterleave(v_src0, v_src1, v_src2, v_src3, \
|
|
|
|
v_src4, v_src5, v_src6, v_src7); \
|
|
|
|
\
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst0), v_src0); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst1), v_src2); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst2), v_src4); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst3), v_src6); \
|
|
|
|
_mm_storeu_##flavor((cast_type *)(dst3 + ELEMS_IN_VEC), v_src7); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
bool support; \
|
|
|
|
}
|
|
|
|
|
|
|
|
SPLIT2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
|
|
|
|
SPLIT2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
|
|
|
|
SPLIT2_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
|
|
|
|
|
|
|
|
SPLIT3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
|
|
|
|
SPLIT3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
|
|
|
|
SPLIT3_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
|
|
|
|
|
|
|
|
SPLIT4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
|
|
|
|
SPLIT4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
|
|
|
|
SPLIT4_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
template<typename T> static void
|
|
|
|
split_( const T* src, T** dst, int len, int cn )
|
|
|
|
{
|
|
|
|
int k = cn % 4 ? cn % 4 : 4;
|
|
|
|
int i, j;
|
|
|
|
if( k == 1 )
|
|
|
|
{
|
|
|
|
T* dst0 = dst[0];
|
|
|
|
|
|
|
|
if(cn == 1)
|
|
|
|
{
|
|
|
|
memcpy(dst0, src, len * sizeof(T));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( i = 0, j = 0 ; i < len; i++, j += cn )
|
|
|
|
dst0[i] = src[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if( k == 2 )
|
|
|
|
{
|
|
|
|
T *dst0 = dst[0], *dst1 = dst[1];
|
|
|
|
i = j = 0;
|
|
|
|
|
|
|
|
#if CV_NEON
|
|
|
|
if(cn == 2)
|
|
|
|
{
|
|
|
|
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
|
|
|
int inc_j = 2 * inc_i;
|
|
|
|
|
|
|
|
VSplit2<T> vsplit;
|
|
|
|
for( ; i < len - inc_i; i += inc_i, j += inc_j)
|
|
|
|
vsplit(src + j, dst0 + i, dst1 + i);
|
|
|
|
}
|
|
|
|
#elif CV_SSE2
|
|
|
|
if (cn == 2)
|
|
|
|
{
|
|
|
|
int inc_i = 32/sizeof(T);
|
|
|
|
int inc_j = 2 * inc_i;
|
|
|
|
|
|
|
|
VSplit2<T> vsplit;
|
|
|
|
if (vsplit.support)
|
|
|
|
{
|
|
|
|
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
|
|
|
vsplit(src + j, dst0 + i, dst1 + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
for( ; i < len; i++, j += cn )
|
|
|
|
{
|
|
|
|
dst0[i] = src[j];
|
|
|
|
dst1[i] = src[j+1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if( k == 3 )
|
|
|
|
{
|
|
|
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2];
|
|
|
|
i = j = 0;
|
|
|
|
|
|
|
|
#if CV_NEON
|
|
|
|
if(cn == 3)
|
|
|
|
{
|
|
|
|
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
|
|
|
int inc_j = 3 * inc_i;
|
|
|
|
|
|
|
|
VSplit3<T> vsplit;
|
|
|
|
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
|
|
|
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
|
|
|
|
}
|
|
|
|
#elif CV_SSE2
|
|
|
|
if (cn == 3)
|
|
|
|
{
|
|
|
|
int inc_i = 32/sizeof(T);
|
|
|
|
int inc_j = 3 * inc_i;
|
|
|
|
|
|
|
|
VSplit3<T> vsplit;
|
|
|
|
|
|
|
|
if (vsplit.support)
|
|
|
|
{
|
|
|
|
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
|
|
|
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
for( ; i < len; i++, j += cn )
|
|
|
|
{
|
|
|
|
dst0[i] = src[j];
|
|
|
|
dst1[i] = src[j+1];
|
|
|
|
dst2[i] = src[j+2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3];
|
|
|
|
i = j = 0;
|
|
|
|
|
|
|
|
#if CV_NEON
|
|
|
|
if(cn == 4)
|
|
|
|
{
|
|
|
|
int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
|
|
|
|
int inc_j = 4 * inc_i;
|
|
|
|
|
|
|
|
VSplit4<T> vsplit;
|
|
|
|
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
|
|
|
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
|
|
|
|
}
|
|
|
|
#elif CV_SSE2
|
|
|
|
if (cn == 4)
|
|
|
|
{
|
|
|
|
int inc_i = 32/sizeof(T);
|
|
|
|
int inc_j = 4 * inc_i;
|
|
|
|
|
|
|
|
VSplit4<T> vsplit;
|
|
|
|
if (vsplit.support)
|
|
|
|
{
|
|
|
|
for( ; i <= len - inc_i; i += inc_i, j += inc_j)
|
|
|
|
vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
for( ; i < len; i++, j += cn )
|
|
|
|
{
|
|
|
|
dst0[i] = src[j]; dst1[i] = src[j+1];
|
|
|
|
dst2[i] = src[j+2]; dst3[i] = src[j+3];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ; k < cn; k += 4 )
|
|
|
|
{
|
|
|
|
T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3];
|
|
|
|
for( i = 0, j = k; i < len; i++, j += cn )
|
|
|
|
{
|
|
|
|
dst0[i] = src[j]; dst1[i] = src[j+1];
|
|
|
|
dst2[i] = src[j+2]; dst3[i] = src[j+3];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void split8u(const uchar* src, uchar** dst, int len, int cn )
|
|
|
|
{
|
2015-12-15 20:55:43 +08:00
|
|
|
CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn)
|
2015-12-03 19:43:37 +08:00
|
|
|
split_(src, dst, len, cn);
|
|
|
|
}
|
|
|
|
|
|
|
|
void split16u(const ushort* src, ushort** dst, int len, int cn )
|
|
|
|
{
|
2015-12-15 20:55:43 +08:00
|
|
|
CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn)
|
2015-12-03 19:43:37 +08:00
|
|
|
split_(src, dst, len, cn);
|
|
|
|
}
|
|
|
|
|
|
|
|
void split32s(const int* src, int** dst, int len, int cn )
|
|
|
|
{
|
2015-12-15 20:55:43 +08:00
|
|
|
CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn)
|
2015-12-03 19:43:37 +08:00
|
|
|
split_(src, dst, len, cn);
|
|
|
|
}
|
|
|
|
|
|
|
|
void split64s(const int64* src, int64** dst, int len, int cn )
|
|
|
|
{
|
2015-12-15 20:55:43 +08:00
|
|
|
CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn)
|
2015-12-03 19:43:37 +08:00
|
|
|
split_(src, dst, len, cn);
|
|
|
|
}
|
|
|
|
|
2018-02-06 20:02:51 +08:00
|
|
|
}} // cv::hal::
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* split & merge *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn);
|
|
|
|
|
|
|
|
static SplitFunc getSplitFunc(int depth)
|
|
|
|
{
|
|
|
|
static SplitFunc splitTab[] =
|
|
|
|
{
|
|
|
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u),
|
|
|
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split64s), 0
|
|
|
|
};
|
|
|
|
|
|
|
|
return splitTab[depth];
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
static bool ipp_split(const Mat& src, Mat* mv, int channels)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_IPP_IW
|
|
|
|
CV_INSTRUMENT_REGION_IPP()
|
|
|
|
|
|
|
|
if(channels != 3 && channels != 4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if(src.dims <= 2)
|
|
|
|
{
|
|
|
|
IppiSize size = ippiSize(src.size());
|
|
|
|
void *dstPtrs[4] = {NULL};
|
|
|
|
size_t dstStep = mv[0].step;
|
|
|
|
for(int i = 0; i < channels; i++)
|
|
|
|
{
|
|
|
|
dstPtrs[i] = mv[i].ptr();
|
|
|
|
if(dstStep != mv[i].step)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return CV_INSTRUMENT_FUN_IPP(llwiCopySplit, src.ptr(), (int)src.step, dstPtrs, (int)dstStep, size, (int)src.elemSize1(), channels, 0) >= 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const Mat *arrays[5] = {NULL};
|
|
|
|
uchar *ptrs[5] = {NULL};
|
|
|
|
arrays[0] = &src;
|
|
|
|
|
|
|
|
for(int i = 1; i < channels; i++)
|
|
|
|
{
|
|
|
|
arrays[i] = &mv[i-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
NAryMatIterator it(arrays, ptrs);
|
|
|
|
IppiSize size = { (int)it.size, 1 };
|
|
|
|
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
|
|
{
|
|
|
|
if(CV_INSTRUMENT_FUN_IPP(llwiCopySplit, ptrs[0], 0, (void**)&ptrs[1], 0, size, (int)src.elemSize1(), channels, 0) < 0)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
CV_UNUSED(src); CV_UNUSED(mv); CV_UNUSED(channels);
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void cv::split(const Mat& src, Mat* mv)
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
|
|
|
|
int k, depth = src.depth(), cn = src.channels();
|
|
|
|
if( cn == 1 )
|
|
|
|
{
|
|
|
|
src.copyTo(mv[0]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
mv[k].create(src.dims, src.size, depth);
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_IPP_RUN_FAST(ipp_split(src, mv, cn));
|
|
|
|
|
|
|
|
SplitFunc func = getSplitFunc(depth);
|
|
|
|
CV_Assert( func != 0 );
|
|
|
|
|
|
|
|
size_t esz = src.elemSize(), esz1 = src.elemSize1();
|
|
|
|
size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
|
|
|
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
|
2018-06-11 06:42:00 +08:00
|
|
|
const Mat** arrays = (const Mat**)_buf.data();
|
2018-02-06 20:02:51 +08:00
|
|
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
|
|
|
|
|
|
|
|
arrays[0] = &src;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
arrays[k+1] = &mv[k];
|
|
|
|
}
|
|
|
|
|
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1);
|
|
|
|
size_t total = it.size;
|
|
|
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
|
|
|
|
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
|
|
{
|
|
|
|
for( size_t j = 0; j < total; j += blocksize )
|
|
|
|
{
|
|
|
|
size_t bsz = std::min(total - j, blocksize);
|
|
|
|
func( ptrs[0], &ptrs[1], (int)bsz, cn );
|
|
|
|
|
|
|
|
if( j + blocksize < total )
|
|
|
|
{
|
|
|
|
ptrs[0] += bsz*esz;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
ptrs[k+1] += bsz*esz1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
|
|
|
|
static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv )
|
|
|
|
{
|
|
|
|
int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
|
|
|
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
|
|
|
|
|
|
|
|
String dstargs, processelem, indexdecl;
|
|
|
|
for (int i = 0; i < cn; ++i)
|
|
|
|
{
|
|
|
|
dstargs += format("DECLARE_DST_PARAM(%d)", i);
|
|
|
|
indexdecl += format("DECLARE_INDEX(%d)", i);
|
|
|
|
processelem += format("PROCESS_ELEM(%d)", i);
|
|
|
|
}
|
|
|
|
|
|
|
|
ocl::Kernel k("split", ocl::core::split_merge_oclsrc,
|
|
|
|
format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s"
|
|
|
|
" -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s",
|
|
|
|
ocl::memopTypeToStr(depth), cn, dstargs.c_str(),
|
|
|
|
processelem.c_str(), indexdecl.c_str()));
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Size size = _m.size();
|
|
|
|
_mv.create(cn, 1, depth);
|
|
|
|
for (int i = 0; i < cn; ++i)
|
|
|
|
_mv.create(size, depth, i);
|
|
|
|
|
|
|
|
std::vector<UMat> dst;
|
|
|
|
_mv.getUMatVector(dst);
|
|
|
|
|
|
|
|
int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat()));
|
|
|
|
for (int i = 0; i < cn; ++i)
|
|
|
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i]));
|
|
|
|
k.set(argidx, rowsPerWI);
|
|
|
|
|
|
|
|
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI };
|
|
|
|
return k.run(2, globalsize, NULL, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void cv::split(InputArray _m, OutputArrayOfArrays _mv)
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
|
|
|
|
CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(),
|
|
|
|
ocl_split(_m, _mv))
|
|
|
|
|
|
|
|
Mat m = _m.getMat();
|
|
|
|
if( m.empty() )
|
|
|
|
{
|
|
|
|
_mv.release();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() );
|
|
|
|
|
|
|
|
int depth = m.depth(), cn = m.channels();
|
|
|
|
_mv.create(cn, 1, depth);
|
|
|
|
for (int i = 0; i < cn; ++i)
|
|
|
|
_mv.create(m.dims, m.size.p, depth, i);
|
|
|
|
|
|
|
|
std::vector<Mat> dst;
|
|
|
|
_mv.getMatVector(dst);
|
|
|
|
|
|
|
|
split(m, &dst[0]);
|
|
|
|
}
|