opencv/samples/cpp/aruco_dict_utils.cpp

349 lines
14 KiB
C++
Raw Normal View History

#include <opencv2/objdetect/aruco_detector.hpp>
#include <iostream>
using namespace cv;
using namespace std;
static int _getSelfDistance(const Mat &marker) {
Mat bytes = aruco::Dictionary::getByteListFromBits(marker);
double minHamming = (double)marker.total() + 1;
for(int r = 1; r < 4; r++) {
cv::Mat tmp1(1, bytes.cols, CV_8UC1, Scalar::all(0));
cv::Mat tmp2(1, bytes.cols, CV_8UC1, Scalar::all(0));
uchar* rot0 = tmp1.ptr();
uchar* rot1 = tmp2.ptr();
for (int i = 0; i < bytes.cols; ++i) {
rot0[i] = bytes.ptr()[i];
rot1[i] = bytes.ptr()[bytes.cols*r + i];
}
double currentHamming = cv::norm(tmp1, tmp2, cv::NORM_HAMMING);
if (currentHamming < minHamming) minHamming = currentHamming;
}
Mat b;
flip(marker, b, 0);
Mat flipBytes = aruco::Dictionary::getByteListFromBits(b);
for(int r = 0; r < 4; r++) {
cv::Mat tmp1(1, flipBytes.cols, CV_8UC1, Scalar::all(0));
cv::Mat tmp2(1, bytes.cols, CV_8UC1, Scalar::all(0));
uchar* rot0 = tmp1.ptr();
uchar* rot1 = tmp2.ptr();
for (int i = 0; i < bytes.cols; ++i) {
rot0[i] = flipBytes.ptr()[i];
rot1[i] = bytes.ptr()[bytes.cols*r + i];
}
double currentHamming = cv::norm(tmp1, tmp2, cv::NORM_HAMMING);
if(currentHamming < minHamming) minHamming = currentHamming;
}
flip(marker, b, 1);
flipBytes = aruco::Dictionary::getByteListFromBits(b);
for(int r = 0; r < 4; r++) {
cv::Mat tmp1(1, flipBytes.cols, CV_8UC1, Scalar::all(0));
cv::Mat tmp2(1, bytes.cols, CV_8UC1, Scalar::all(0));
uchar* rot0 = tmp1.ptr();
uchar* rot1 = tmp2.ptr();
for (int i = 0; i < bytes.cols; ++i) {
rot0[i] = flipBytes.ptr()[i];
rot1[i] = bytes.ptr()[bytes.cols*r + i];
}
double currentHamming = cv::norm(tmp1, tmp2, cv::NORM_HAMMING);
if(currentHamming < minHamming) minHamming = currentHamming;
}
return cvRound(minHamming);
}
static inline int getFlipDistanceToId(const aruco::Dictionary& dict, InputArray bits, int id, bool allRotations = true) {
Mat bytesList = dict.bytesList;
CV_Assert(id >= 0 && id < bytesList.rows);
unsigned int nRotations = 4;
if(!allRotations) nRotations = 1;
Mat candidateBytes = aruco::Dictionary::getByteListFromBits(bits.getMat());
double currentMinDistance = int(bits.total() * bits.total());
for(unsigned int r = 0; r < nRotations; r++) {
cv::Mat tmp1(1, candidateBytes.cols, CV_8UC1, Scalar::all(0));
cv::Mat tmp2(1, candidateBytes.cols, CV_8UC1, Scalar::all(0));
uchar* rot0 = tmp1.ptr();
uchar* rot1 = tmp2.ptr();
for (int i = 0; i < candidateBytes.cols; ++i) {
rot0[i] = bytesList.ptr(id)[r*candidateBytes.cols + i];
rot1[i] = candidateBytes.ptr()[i];
}
double currentHamming = cv::norm(tmp1, tmp2, cv::NORM_HAMMING);
if(currentHamming < currentMinDistance) {
currentMinDistance = currentHamming;
}
}
Mat b;
flip(bits.getMat(), b, 0);
candidateBytes = aruco::Dictionary::getByteListFromBits(b);
for(unsigned int r = 0; r < nRotations; r++) {
cv::Mat tmp1(1, candidateBytes.cols, CV_8UC1, Scalar::all(0));
cv::Mat tmp2(1, candidateBytes.cols, CV_8UC1, Scalar::all(0));
uchar* rot0 = tmp1.ptr();
uchar* rot1 = tmp2.ptr();
for (int i = 0; i < candidateBytes.cols; ++i) {
rot0[i] = bytesList.ptr(id)[r*candidateBytes.cols + i];
rot1[i] = candidateBytes.ptr()[i];
}
double currentHamming = cv::norm(tmp1, tmp2, cv::NORM_HAMMING);
if (currentHamming < currentMinDistance) {
currentMinDistance = currentHamming;
}
}
flip(bits.getMat(), b, 1);
candidateBytes = aruco::Dictionary::getByteListFromBits(b);
for(unsigned int r = 0; r < nRotations; r++) {
cv::Mat tmp1(1, candidateBytes.cols, CV_8UC1, Scalar::all(0));
cv::Mat tmp2(1, candidateBytes.cols, CV_8UC1, Scalar::all(0));
uchar* rot0 = tmp1.ptr();
uchar* rot1 = tmp2.ptr();
for (int i = 0; i < candidateBytes.cols; ++i) {
rot0[i] = bytesList.ptr(id)[r*candidateBytes.cols + i];
rot1[i] = candidateBytes.ptr()[i];
}
double currentHamming = cv::norm(tmp1, tmp2, cv::NORM_HAMMING);
if (currentHamming < currentMinDistance) {
currentMinDistance = currentHamming;
}
}
return cvRound(currentMinDistance);
}
static inline aruco::Dictionary generateCustomAsymmetricDictionary(int nMarkers, int markerSize,
const aruco::Dictionary &baseDictionary,
int randomSeed) {
RNG rng((uint64)(randomSeed));
aruco::Dictionary out;
out.markerSize = markerSize;
// theoretical maximum intermarker distance
// See S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez. 2014.
// "Automatic generation and detection of highly reliable fiducial markers under occlusion".
// Pattern Recogn. 47, 6 (June 2014), 2280-2292. DOI=10.1016/j.patcog.2014.01.005
int C = (int)std::floor(float(markerSize * markerSize) / 4.f);
int tau = 2 * (int)std::floor(float(C) * 4.f / 3.f);
// if baseDictionary is provided, calculate its intermarker distance
if(baseDictionary.bytesList.rows > 0) {
CV_Assert(baseDictionary.markerSize == markerSize);
out.bytesList = baseDictionary.bytesList.clone();
int minDistance = markerSize * markerSize + 1;
for(int i = 0; i < out.bytesList.rows; i++) {
Mat markerBytes = out.bytesList.rowRange(i, i + 1);
Mat markerBits = aruco::Dictionary::getBitsFromByteList(markerBytes, markerSize);
minDistance = min(minDistance, _getSelfDistance(markerBits));
for(int j = i + 1; j < out.bytesList.rows; j++) {
minDistance = min(minDistance, getFlipDistanceToId(out, markerBits, j));
}
}
tau = minDistance;
}
// current best option
int bestTau = 0;
Mat bestMarker;
// after these number of unproductive iterations, the best option is accepted
const int maxUnproductiveIterations = 5000;
int unproductiveIterations = 0;
while(out.bytesList.rows < nMarkers) {
Mat currentMarker(markerSize, markerSize, CV_8UC1, Scalar::all(0));
rng.fill(currentMarker, RNG::UNIFORM, 0, 2);
int selfDistance = _getSelfDistance(currentMarker);
int minDistance = selfDistance;
// if self distance is better or equal than current best option, calculate distance
// to previous accepted markers
if(selfDistance >= bestTau) {
for(int i = 0; i < out.bytesList.rows; i++) {
int currentDistance = getFlipDistanceToId(out, currentMarker, i);
minDistance = min(currentDistance, minDistance);
if(minDistance <= bestTau) {
break;
}
}
}
// if distance is high enough, accept the marker
if(minDistance >= tau) {
unproductiveIterations = 0;
bestTau = 0;
Mat bytes = aruco::Dictionary::getByteListFromBits(currentMarker);
out.bytesList.push_back(bytes);
} else {
unproductiveIterations++;
// if distance is not enough, but is better than the current best option
if(minDistance > bestTau) {
bestTau = minDistance;
bestMarker = currentMarker;
}
// if number of unproductive iterarions has been reached, accept the current best option
if(unproductiveIterations == maxUnproductiveIterations) {
unproductiveIterations = 0;
tau = bestTau;
bestTau = 0;
Mat bytes = aruco::Dictionary::getByteListFromBits(bestMarker);
out.bytesList.push_back(bytes);
}
}
}
// update the maximum number of correction bits for the generated dictionary
out.maxCorrectionBits = (tau - 1) / 2;
return out;
}
static inline int getMinDistForDict(const aruco::Dictionary& dict) {
const int dict_size = dict.bytesList.rows;
const int marker_size = dict.markerSize;
int minDist = marker_size * marker_size;
for (int i = 0; i < dict_size; i++) {
Mat row = dict.bytesList.row(i);
Mat marker = dict.getBitsFromByteList(row, marker_size);
for (int j = 0; j < dict_size; j++) {
if (j != i) {
minDist = min(dict.getDistanceToId(marker, j), minDist);
}
}
}
return minDist;
}
static inline int getMinAsymDistForDict(const aruco::Dictionary& dict) {
const int dict_size = dict.bytesList.rows;
const int marker_size = dict.markerSize;
int minDist = marker_size * marker_size;
for (int i = 0; i < dict_size; i++)
{
Mat row = dict.bytesList.row(i);
Mat marker = dict.getBitsFromByteList(row, marker_size);
for (int j = 0; j < dict_size; j++)
{
if (j != i)
{
minDist = min(getFlipDistanceToId(dict, marker, j), minDist);
}
}
}
return minDist;
}
const char* keys =
"{@outfile |<none> | Output file with custom dict }"
"{r | false | Calculate the metric considering flipped markers }"
"{d | | Dictionary Name: DICT_4X4_50, DICT_4X4_100, DICT_4X4_250,"
"DICT_4X4_1000, DICT_5X5_50, DICT_5X5_100, DICT_5X5_250, DICT_5X5_1000, "
"DICT_6X6_50, DICT_6X6_100, DICT_6X6_250, DICT_6X6_1000, DICT_7X7_50,"
"DICT_7X7_100, DICT_7X7_250, DICT_7X7_1000, DICT_ARUCO_ORIGINAL,"
"DICT_APRILTAG_16h5, DICT_APRILTAG_25h9, DICT_APRILTAG_36h10,"
"DICT_APRILTAG_36h11}"
"{nMarkers | | Number of markers in the dictionary }"
"{markerSize | | Marker size }"
"{cd | | Input file with custom dictionary }";
const char* about =
"This program can be used to calculate the ArUco dictionary metric.\n"
"To calculate the metric considering flipped markers use -'r' flag.\n"
"This program can be used to create and write the custom ArUco dictionary.\n";
int main(int argc, char *argv[])
{
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if(argc < 2) {
parser.printMessage();
return 0;
}
string outputFile = parser.get<String>(0);
int nMarkers = parser.get<int>("nMarkers");
int markerSize = parser.get<int>("markerSize");
bool checkFlippedMarkers = parser.get<bool>("r");
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(0);
if (parser.has("d")) {
string arucoDictName = parser.get<string>("d");
cv::aruco::PredefinedDictionaryType arucoDict;
if (arucoDictName == "DICT_4X4_50") { arucoDict = cv::aruco::DICT_4X4_50; }
else if (arucoDictName == "DICT_4X4_100") { arucoDict = cv::aruco::DICT_4X4_100; }
else if (arucoDictName == "DICT_4X4_250") { arucoDict = cv::aruco::DICT_4X4_250; }
else if (arucoDictName == "DICT_4X4_1000") { arucoDict = cv::aruco::DICT_4X4_1000; }
else if (arucoDictName == "DICT_5X5_50") { arucoDict = cv::aruco::DICT_5X5_50; }
else if (arucoDictName == "DICT_5X5_100") { arucoDict = cv::aruco::DICT_5X5_100; }
else if (arucoDictName == "DICT_5X5_250") { arucoDict = cv::aruco::DICT_5X5_250; }
else if (arucoDictName == "DICT_5X5_1000") { arucoDict = cv::aruco::DICT_5X5_1000; }
else if (arucoDictName == "DICT_6X6_50") { arucoDict = cv::aruco::DICT_6X6_50; }
else if (arucoDictName == "DICT_6X6_100") { arucoDict = cv::aruco::DICT_6X6_100; }
else if (arucoDictName == "DICT_6X6_250") { arucoDict = cv::aruco::DICT_6X6_250; }
else if (arucoDictName == "DICT_6X6_1000") { arucoDict = cv::aruco::DICT_6X6_1000; }
else if (arucoDictName == "DICT_7X7_50") { arucoDict = cv::aruco::DICT_7X7_50; }
else if (arucoDictName == "DICT_7X7_100") { arucoDict = cv::aruco::DICT_7X7_100; }
else if (arucoDictName == "DICT_7X7_250") { arucoDict = cv::aruco::DICT_7X7_250; }
else if (arucoDictName == "DICT_7X7_1000") { arucoDict = cv::aruco::DICT_7X7_1000; }
else if (arucoDictName == "DICT_ARUCO_ORIGINAL") { arucoDict = cv::aruco::DICT_ARUCO_ORIGINAL; }
else if (arucoDictName == "DICT_APRILTAG_16h5") { arucoDict = cv::aruco::DICT_APRILTAG_16h5; }
else if (arucoDictName == "DICT_APRILTAG_25h9") { arucoDict = cv::aruco::DICT_APRILTAG_25h9; }
else if (arucoDictName == "DICT_APRILTAG_36h10") { arucoDict = cv::aruco::DICT_APRILTAG_36h10; }
else if (arucoDictName == "DICT_APRILTAG_36h11") { arucoDict = cv::aruco::DICT_APRILTAG_36h11; }
else {
cout << "incorrect name of aruco dictionary \n";
return 1;
}
dictionary = aruco::getPredefinedDictionary(arucoDict);
}
else if (parser.has("cd")) {
FileStorage fs(parser.get<std::string>("cd"), FileStorage::READ);
bool readOk = dictionary.readDictionary(fs.root());
if(!readOk) {
cerr << "Invalid dictionary file" << endl;
return 0;
}
}
else if (outputFile.empty() || nMarkers == 0 || markerSize == 0) {
cerr << "Dictionary not specified" << endl;
return 0;
}
if (!outputFile.empty() && nMarkers > 0 && markerSize > 0)
{
FileStorage fs(outputFile, FileStorage::WRITE);
if (checkFlippedMarkers)
dictionary = generateCustomAsymmetricDictionary(nMarkers, markerSize, aruco::Dictionary(), 0);
else
dictionary = aruco::extendDictionary(nMarkers, markerSize, aruco::Dictionary(), 0);
dictionary.writeDictionary(fs);
}
if (checkFlippedMarkers) {
cout << "Hamming distance: " << getMinAsymDistForDict(dictionary) << endl;
}
else {
cout << "Hamming distance: " << getMinDistForDict(dictionary) << endl;
}
return 0;
}