2024-02-29 16:42:19 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2024, OpenCV Team, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int>> Layer_1d_Test;
|
|
|
|
TEST_P(Layer_1d_Test, Scale)
|
|
|
|
{
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Scale";
|
|
|
|
lp.name = "scaleLayer";
|
|
|
|
lp.set("axis", 0);
|
|
|
|
lp.set("mode", "scale");
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
Ptr<ScaleLayer> layer = ScaleLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 3};
|
|
|
|
std::vector<int> output_shape = {batch_size, 3};
|
|
|
|
|
|
|
|
if (batch_size == 0){
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
output_shape.erase(output_shape.begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
cv::Mat weight = cv::Mat(output_shape, CV_32F, 2.0);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input, weight};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
cv::Mat output_ref = input.mul(weight);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, int>> Layer_Gather_1d_Test;
|
|
|
|
TEST_P(Layer_Gather_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
int axis = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Gather";
|
|
|
|
lp.name = "gatherLayer";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
lp.set("real_ndims", 1);
|
|
|
|
|
|
|
|
Ptr<GatherLayer> layer = GatherLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
std::vector<int> indices_shape = {1, 1};
|
|
|
|
std::vector<int> output_shape = {batch_size, 1};
|
|
|
|
|
|
|
|
if (batch_size == 0){
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
indices_shape.erase(indices_shape.begin());
|
|
|
|
output_shape.erase(output_shape.begin());
|
|
|
|
} else if (axis == 0) {
|
|
|
|
output_shape[0] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::randu(input, 0.0, 1.0);
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
cv::Mat indices = cv::Mat(indices_shape, CV_32S, 0.0);
|
2024-02-29 16:42:19 +08:00
|
|
|
cv::Mat output_ref = cv::Mat(output_shape, CV_32F, input(cv::Range::all(), cv::Range(0, 1)).data);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input, indices};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Gather_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1, 2, 3),
|
|
|
|
/*operation*/ Values(0, 1)
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, int, std::string>> Layer_Arg_1d_Test;
|
|
|
|
TEST_P(Layer_Arg_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
int axis = get<1>(GetParam());
|
|
|
|
std::string operation = get<2>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Arg";
|
|
|
|
lp.name = "arg" + operation + "_Layer";
|
|
|
|
lp.set("op", operation);
|
|
|
|
lp.set("axis", axis);
|
|
|
|
lp.set("keepdims", 1);
|
|
|
|
lp.set("select_last_index", 0);
|
|
|
|
|
|
|
|
Ptr<ArgLayer> layer = ArgLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
std::vector<int> output_shape = {1, 1};
|
|
|
|
|
|
|
|
if (batch_size == 0){
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
output_shape.erase(output_shape.begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
if (axis != 0 && batch_size != 0){
|
|
|
|
output_shape[0] = batch_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F, 1);
|
|
|
|
cv::Mat output_ref = cv::Mat(output_shape, CV_32F, 0);
|
|
|
|
|
|
|
|
for (int i = 0; i < batch_size; ++i)
|
|
|
|
input.at<float>(i, 0) = static_cast<float>(i + 1);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Arg_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1, 2, 3),
|
|
|
|
/*operation*/ Values(0, 1),
|
|
|
|
/*operation*/ Values( "max", "min")
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, std::string>> Layer_NaryElemwise_1d_Test;
|
|
|
|
TEST_P(Layer_NaryElemwise_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = operation + "_Layer";
|
|
|
|
lp.set("operation", operation);
|
|
|
|
Ptr<NaryEltwiseLayer> layer = NaryEltwiseLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
if (batch_size == 0)
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
|
|
|
|
cv::Mat input1 = cv::Mat(input_shape, CV_32F, 0.0);
|
|
|
|
cv::Mat input2 = cv::Mat(input_shape, CV_32F, 0.0);
|
|
|
|
cv::randu(input1, 0.0, 1.0);
|
|
|
|
cv::randu(input2, 0.0, 1.0);
|
|
|
|
|
|
|
|
cv::Mat output_ref;
|
|
|
|
if (operation == "sum") {
|
|
|
|
output_ref = input1 + input2;
|
|
|
|
} else if (operation == "mul") {
|
|
|
|
output_ref = input1.mul(input2);
|
|
|
|
} else if (operation == "div") {
|
|
|
|
output_ref = input1 / input2;
|
|
|
|
} else if (operation == "sub") {
|
|
|
|
output_ref = input1 - input2;
|
|
|
|
} else {
|
|
|
|
output_ref = cv::Mat();
|
|
|
|
}
|
|
|
|
std::vector<Mat> inputs{input1, input2};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
if (!output_ref.empty()) {
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
} else {
|
|
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_NaryElemwise_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1),
|
|
|
|
/*operation*/ Values("div", "mul", "sum", "sub")
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, std::string>> Layer_Elemwise_1d_Test;
|
|
|
|
TEST_P(Layer_Elemwise_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = operation + "_Layer";
|
|
|
|
lp.set("operation", operation);
|
|
|
|
Ptr<EltwiseLayer> layer = EltwiseLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
if (batch_size == 0)
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
|
|
|
|
cv::Mat input1 = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::Mat input2 = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::randu(input1, 0.0, 1.0);
|
|
|
|
cv::randu(input2, 0.0, 1.0);
|
|
|
|
|
|
|
|
// Dynamically select the operation
|
|
|
|
cv::Mat output_ref;
|
|
|
|
if (operation == "sum") {
|
|
|
|
output_ref = input1 + input2;
|
|
|
|
} else if (operation == "max") {
|
|
|
|
output_ref = cv::max(input1, input2);
|
|
|
|
} else if (operation == "min") {
|
|
|
|
output_ref = cv::min(input1, input2);
|
|
|
|
} else if (operation == "prod") {
|
|
|
|
output_ref = input1.mul(input2);
|
|
|
|
} else if (operation == "div") {
|
|
|
|
output_ref = input1 / input2;
|
|
|
|
} else {
|
|
|
|
output_ref = cv::Mat();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input1, input2};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
if (!output_ref.empty()) {
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
} else {
|
|
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Elemwise_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1, 2, 3),
|
|
|
|
/*operation*/ Values("div", "prod", "max", "min", "sum")
|
|
|
|
));
|
|
|
|
|
|
|
|
}}
|