Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#ifndef OPENCV_DNN_SRC_CUDA_KERNEL_DISPATCHER_HPP
|
|
|
|
#define OPENCV_DNN_SRC_CUDA_KERNEL_DISPATCHER_HPP
|
|
|
|
|
|
|
|
#include <cstddef>
|
|
|
|
#include <type_traits>
|
|
|
|
|
|
|
|
/* The performance of many kernels are highly dependent on the tensor rank. Instead of having
|
|
|
|
* one kernel which can work with the maximally ranked tensors, we make one kernel for each supported
|
|
|
|
* tensor rank. This is to ensure that the requirements of the maximally ranked tensors do not take a
|
|
|
|
* toll on the performance of the operation for low ranked tensors. Hence, many kernels take the tensor
|
|
|
|
* rank as a template parameter.
|
|
|
|
*
|
|
|
|
* The kernel is a template and we have different instantiations for each rank. This causes the following pattern
|
|
|
|
* to arise frequently:
|
|
|
|
*
|
|
|
|
* if(rank == 3)
|
|
|
|
* kernel<T, 3>();
|
|
|
|
* else if(rank == 2)
|
|
|
|
* kernel<T, 2>();
|
|
|
|
* else
|
|
|
|
* kernel<T, 1>();
|
|
|
|
*
|
|
|
|
* The rank is a runtime variable. To facilitate creation of such structures, we use GENERATE_KERNEL_DISPATCHER.
|
|
|
|
* This macro creates a function which selects the correct kernel instantiation at runtime.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
*
|
|
|
|
* // function which setups the kernel and launches it
|
|
|
|
* template <class T, std::size_t Rank>
|
|
|
|
* void launch_some_kernel(...);
|
|
|
|
*
|
|
|
|
* // creates the dispatcher named "some_dispatcher" which invokves the correct instantiation of "launch_some_kernel"
|
|
|
|
* GENERATE_KERNEL_DISPATCHER(some_dispatcher, launch_some_kernel);
|
|
|
|
*
|
|
|
|
* // internal API function
|
|
|
|
* template <class T>
|
|
|
|
* void some(...) {
|
|
|
|
* // ...
|
|
|
|
* auto rank = input.rank();
|
|
|
|
* some_dispatcher<T, MIN_RANK, MAX_RANK>(rank, ...);
|
|
|
|
* }
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* name name of the dispatcher function that is generated
|
|
|
|
* func template function that requires runtime selection
|
|
|
|
*
|
|
|
|
* T first template parameter to `func`
|
|
|
|
* start starting rank
|
|
|
|
* end ending rank (inclusive)
|
|
|
|
*
|
|
|
|
* Executes func<T, selector> based on runtime `selector` argument given `selector` lies
|
|
|
|
* within the range [start, end]. If outside the range, no instantiation of `func` is executed.
|
|
|
|
*/
|
|
|
|
#define GENERATE_KERNEL_DISPATCHER(name,func); \
|
|
|
|
template <class T, std::size_t start, std::size_t end, class... Args> static \
|
|
|
|
typename std::enable_if<start == end, void> \
|
|
|
|
::type name(int selector, Args&& ...args) { \
|
|
|
|
if(selector == start) \
|
|
|
|
func<T, start>(std::forward<Args>(args)...); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
template <class T, std::size_t start, std::size_t end, class... Args> static \
|
|
|
|
typename std::enable_if<start != end, void> \
|
|
|
|
::type name(int selector, Args&& ...args) { \
|
|
|
|
if(selector == start) \
|
|
|
|
func<T, start>(std::forward<Args>(args)...); \
|
|
|
|
else \
|
|
|
|
name<T, start + 1, end, Args...>(selector, std::forward<Args>(args)...); \
|
|
|
|
}
|
|
|
|
|
2021-10-04 15:08:45 +08:00
|
|
|
// Same as GENERATE_KERNEL_DISPATCHER but takes two class template parameters T and TP1 instead of just T
|
|
|
|
#define GENERATE_KERNEL_DISPATCHER_2TP(name,func); \
|
|
|
|
template <class TP1, class TP2, std::size_t start, std::size_t end, class... Args> static \
|
|
|
|
typename std::enable_if<start == end, void> \
|
|
|
|
::type name(int selector, Args&& ...args) { \
|
|
|
|
if(selector == start) \
|
|
|
|
func<TP1, TP2, start>(std::forward<Args>(args)...); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
template <class TP1, class TP2, std::size_t start, std::size_t end, class... Args> static \
|
|
|
|
typename std::enable_if<start != end, void> \
|
|
|
|
::type name(int selector, Args&& ...args) { \
|
|
|
|
if(selector == start) \
|
|
|
|
func<TP1, TP2, start>(std::forward<Args>(args)...); \
|
|
|
|
else \
|
|
|
|
name<TP1, TP2, start + 1, end, Args...>(selector, std::forward<Args>(args)...); \
|
|
|
|
}
|
|
|
|
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
#endif /* OPENCV_DNN_SRC_CUDA_KERNEL_DISPATCHER_HPP */
|