mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
368 lines
8.9 KiB
C
368 lines
8.9 KiB
C
|
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
|
||
|
|
||
|
#include "f2c.h"
|
||
|
|
||
|
//> \brief \b DCOMBSSQ adds two scaled sum of squares quantities.
|
||
|
//
|
||
|
// =========== DOCUMENTATION ===========
|
||
|
//
|
||
|
// Online html documentation available at
|
||
|
// http://www.netlib.org/lapack/explore-html/
|
||
|
//
|
||
|
//
|
||
|
// Definition:
|
||
|
// ===========
|
||
|
//
|
||
|
// SUBROUTINE DCOMBSSQ( V1, V2 )
|
||
|
//
|
||
|
// .. Array Arguments ..
|
||
|
// DOUBLE PRECISION V1( 2 ), V2( 2 )
|
||
|
// ..
|
||
|
//
|
||
|
//
|
||
|
//> \par Purpose:
|
||
|
// =============
|
||
|
//>
|
||
|
//> \verbatim
|
||
|
//>
|
||
|
//> DCOMBSSQ adds two scaled sum of squares quantities, V1 := V1 + V2.
|
||
|
//> That is,
|
||
|
//>
|
||
|
//> V1_scale**2 * V1_sumsq := V1_scale**2 * V1_sumsq
|
||
|
//> + V2_scale**2 * V2_sumsq
|
||
|
//> \endverbatim
|
||
|
//
|
||
|
// Arguments:
|
||
|
// ==========
|
||
|
//
|
||
|
//> \param[in,out] V1
|
||
|
//> \verbatim
|
||
|
//> V1 is DOUBLE PRECISION array, dimension (2).
|
||
|
//> The first scaled sum.
|
||
|
//> V1(1) = V1_scale, V1(2) = V1_sumsq.
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \param[in] V2
|
||
|
//> \verbatim
|
||
|
//> V2 is DOUBLE PRECISION array, dimension (2).
|
||
|
//> The second scaled sum.
|
||
|
//> V2(1) = V2_scale, V2(2) = V2_sumsq.
|
||
|
//> \endverbatim
|
||
|
//
|
||
|
// Authors:
|
||
|
// ========
|
||
|
//
|
||
|
//> \author Univ. of Tennessee
|
||
|
//> \author Univ. of California Berkeley
|
||
|
//> \author Univ. of Colorado Denver
|
||
|
//> \author NAG Ltd.
|
||
|
//
|
||
|
//> \date November 2018
|
||
|
//
|
||
|
//> \ingroup OTHERauxiliary
|
||
|
//
|
||
|
// =====================================================================
|
||
|
/* Subroutine */ int dcombssq_(double *v1, double *v2)
|
||
|
{
|
||
|
// System generated locals
|
||
|
double d__1;
|
||
|
|
||
|
//
|
||
|
// -- LAPACK auxiliary routine (version 3.7.0) --
|
||
|
// -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
// November 2018
|
||
|
//
|
||
|
// .. Array Arguments ..
|
||
|
// ..
|
||
|
//
|
||
|
//=====================================================================
|
||
|
//
|
||
|
// .. Parameters ..
|
||
|
// ..
|
||
|
// .. Executable Statements ..
|
||
|
//
|
||
|
// Parameter adjustments
|
||
|
--v2;
|
||
|
--v1;
|
||
|
|
||
|
// Function Body
|
||
|
if (v1[1] >= v2[1]) {
|
||
|
if (v1[1] != 0.) {
|
||
|
// Computing 2nd power
|
||
|
d__1 = v2[1] / v1[1];
|
||
|
v1[2] += d__1 * d__1 * v2[2];
|
||
|
}
|
||
|
} else {
|
||
|
// Computing 2nd power
|
||
|
d__1 = v1[1] / v2[1];
|
||
|
v1[2] = v2[2] + d__1 * d__1 * v1[2];
|
||
|
v1[1] = v2[1];
|
||
|
}
|
||
|
return 0;
|
||
|
//
|
||
|
// End of DCOMBSSQ
|
||
|
//
|
||
|
} // dcombssq_
|
||
|
|
||
|
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
|
||
|
|
||
|
//> \brief \b DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
|
||
|
//
|
||
|
// =========== DOCUMENTATION ===========
|
||
|
//
|
||
|
// Online html documentation available at
|
||
|
// http://www.netlib.org/lapack/explore-html/
|
||
|
//
|
||
|
//> \htmlonly
|
||
|
//> Download DLANGE + dependencies
|
||
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f">
|
||
|
//> [TGZ]</a>
|
||
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f">
|
||
|
//> [ZIP]</a>
|
||
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f">
|
||
|
//> [TXT]</a>
|
||
|
//> \endhtmlonly
|
||
|
//
|
||
|
// Definition:
|
||
|
// ===========
|
||
|
//
|
||
|
// DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
|
||
|
//
|
||
|
// .. Scalar Arguments ..
|
||
|
// CHARACTER NORM
|
||
|
// INTEGER LDA, M, N
|
||
|
// ..
|
||
|
// .. Array Arguments ..
|
||
|
// DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||
|
// ..
|
||
|
//
|
||
|
//
|
||
|
//> \par Purpose:
|
||
|
// =============
|
||
|
//>
|
||
|
//> \verbatim
|
||
|
//>
|
||
|
//> DLANGE returns the value of the one norm, or the Frobenius norm, or
|
||
|
//> the infinity norm, or the element of largest absolute value of a
|
||
|
//> real matrix A.
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \return DLANGE
|
||
|
//> \verbatim
|
||
|
//>
|
||
|
//> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
||
|
//> (
|
||
|
//> ( norm1(A), NORM = '1', 'O' or 'o'
|
||
|
//> (
|
||
|
//> ( normI(A), NORM = 'I' or 'i'
|
||
|
//> (
|
||
|
//> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
||
|
//>
|
||
|
//> where norm1 denotes the one norm of a matrix (maximum column sum),
|
||
|
//> normI denotes the infinity norm of a matrix (maximum row sum) and
|
||
|
//> normF denotes the Frobenius norm of a matrix (square root of sum of
|
||
|
//> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
||
|
//> \endverbatim
|
||
|
//
|
||
|
// Arguments:
|
||
|
// ==========
|
||
|
//
|
||
|
//> \param[in] NORM
|
||
|
//> \verbatim
|
||
|
//> NORM is CHARACTER*1
|
||
|
//> Specifies the value to be returned in DLANGE as described
|
||
|
//> above.
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \param[in] M
|
||
|
//> \verbatim
|
||
|
//> M is INTEGER
|
||
|
//> The number of rows of the matrix A. M >= 0. When M = 0,
|
||
|
//> DLANGE is set to zero.
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \param[in] N
|
||
|
//> \verbatim
|
||
|
//> N is INTEGER
|
||
|
//> The number of columns of the matrix A. N >= 0. When N = 0,
|
||
|
//> DLANGE is set to zero.
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \param[in] A
|
||
|
//> \verbatim
|
||
|
//> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
//> The m by n matrix A.
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \param[in] LDA
|
||
|
//> \verbatim
|
||
|
//> LDA is INTEGER
|
||
|
//> The leading dimension of the array A. LDA >= max(M,1).
|
||
|
//> \endverbatim
|
||
|
//>
|
||
|
//> \param[out] WORK
|
||
|
//> \verbatim
|
||
|
//> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
|
||
|
//> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
|
||
|
//> referenced.
|
||
|
//> \endverbatim
|
||
|
//
|
||
|
// Authors:
|
||
|
// ========
|
||
|
//
|
||
|
//> \author Univ. of Tennessee
|
||
|
//> \author Univ. of California Berkeley
|
||
|
//> \author Univ. of Colorado Denver
|
||
|
//> \author NAG Ltd.
|
||
|
//
|
||
|
//> \date December 2016
|
||
|
//
|
||
|
//> \ingroup doubleGEauxiliary
|
||
|
//
|
||
|
// =====================================================================
|
||
|
double dlange_(char *norm, int *m, int *n, double *a, int *lda, double *work)
|
||
|
{
|
||
|
// Table of constant values
|
||
|
int c__1 = 1;
|
||
|
|
||
|
// System generated locals
|
||
|
int a_dim1, a_offset, i__1, i__2;
|
||
|
double ret_val, d__1;
|
||
|
|
||
|
// Local variables
|
||
|
extern /* Subroutine */ int dcombssq_(double *, double *);
|
||
|
int i__, j;
|
||
|
double sum, ssq[2], temp;
|
||
|
extern int lsame_(char *, char *);
|
||
|
double value;
|
||
|
extern int disnan_(double *);
|
||
|
extern /* Subroutine */ int dlassq_(int *, double *, int *, double *,
|
||
|
double *);
|
||
|
double colssq[2];
|
||
|
|
||
|
//
|
||
|
// -- LAPACK auxiliary routine (version 3.7.0) --
|
||
|
// -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
// December 2016
|
||
|
//
|
||
|
// .. Scalar Arguments ..
|
||
|
// ..
|
||
|
// .. Array Arguments ..
|
||
|
// ..
|
||
|
//
|
||
|
//=====================================================================
|
||
|
//
|
||
|
// .. Parameters ..
|
||
|
// ..
|
||
|
// .. Local Scalars ..
|
||
|
// ..
|
||
|
// .. Local Arrays ..
|
||
|
// ..
|
||
|
// .. External Subroutines ..
|
||
|
// ..
|
||
|
// .. External Functions ..
|
||
|
// ..
|
||
|
// .. Intrinsic Functions ..
|
||
|
// ..
|
||
|
// .. Executable Statements ..
|
||
|
//
|
||
|
// Parameter adjustments
|
||
|
a_dim1 = *lda;
|
||
|
a_offset = 1 + a_dim1;
|
||
|
a -= a_offset;
|
||
|
--work;
|
||
|
|
||
|
// Function Body
|
||
|
if (min(*m,*n) == 0) {
|
||
|
value = 0.;
|
||
|
} else if (lsame_(norm, "M")) {
|
||
|
//
|
||
|
// Find max(abs(A(i,j))).
|
||
|
//
|
||
|
value = 0.;
|
||
|
i__1 = *n;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
i__2 = *m;
|
||
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
||
|
temp = (d__1 = a[i__ + j * a_dim1], abs(d__1));
|
||
|
if (value < temp || disnan_(&temp)) {
|
||
|
value = temp;
|
||
|
}
|
||
|
// L10:
|
||
|
}
|
||
|
// L20:
|
||
|
}
|
||
|
} else if (lsame_(norm, "O") || *(unsigned char *)norm == '1') {
|
||
|
//
|
||
|
// Find norm1(A).
|
||
|
//
|
||
|
value = 0.;
|
||
|
i__1 = *n;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
sum = 0.;
|
||
|
i__2 = *m;
|
||
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
||
|
sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
|
||
|
// L30:
|
||
|
}
|
||
|
if (value < sum || disnan_(&sum)) {
|
||
|
value = sum;
|
||
|
}
|
||
|
// L40:
|
||
|
}
|
||
|
} else if (lsame_(norm, "I")) {
|
||
|
//
|
||
|
// Find normI(A).
|
||
|
//
|
||
|
i__1 = *m;
|
||
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
||
|
work[i__] = 0.;
|
||
|
// L50:
|
||
|
}
|
||
|
i__1 = *n;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
i__2 = *m;
|
||
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
||
|
work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
|
||
|
// L60:
|
||
|
}
|
||
|
// L70:
|
||
|
}
|
||
|
value = 0.;
|
||
|
i__1 = *m;
|
||
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
||
|
temp = work[i__];
|
||
|
if (value < temp || disnan_(&temp)) {
|
||
|
value = temp;
|
||
|
}
|
||
|
// L80:
|
||
|
}
|
||
|
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
|
||
|
//
|
||
|
// Find normF(A).
|
||
|
// SSQ(1) is scale
|
||
|
// SSQ(2) is sum-of-squares
|
||
|
// For better accuracy, sum each column separately.
|
||
|
//
|
||
|
ssq[0] = 0.;
|
||
|
ssq[1] = 1.;
|
||
|
i__1 = *n;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
colssq[0] = 0.;
|
||
|
colssq[1] = 1.;
|
||
|
dlassq_(m, &a[j * a_dim1 + 1], &c__1, colssq, &colssq[1]);
|
||
|
dcombssq_(ssq, colssq);
|
||
|
// L90:
|
||
|
}
|
||
|
value = ssq[0] * sqrt(ssq[1]);
|
||
|
}
|
||
|
ret_val = value;
|
||
|
return ret_val;
|
||
|
//
|
||
|
// End of DLANGE
|
||
|
//
|
||
|
} // dlange_
|
||
|
|