opencv/3rdparty/clapack/src/dlarfb.c

825 lines
22 KiB
C
Raw Normal View History

/* -- translated by f2c (version 20201020 (for_lapack)). -- */
#include "f2c.h"
//> \brief \b DLARFB applies a block reflector or its transpose to a general rectangular matrix.
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DLARFB + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfb.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfb.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfb.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
// T, LDT, C, LDC, WORK, LDWORK )
//
// .. Scalar Arguments ..
// CHARACTER DIRECT, SIDE, STOREV, TRANS
// INTEGER K, LDC, LDT, LDV, LDWORK, M, N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ),
// $ WORK( LDWORK, * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DLARFB applies a real block reflector H or its transpose H**T to a
//> real m by n matrix C, from either the left or the right.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] SIDE
//> \verbatim
//> SIDE is CHARACTER*1
//> = 'L': apply H or H**T from the Left
//> = 'R': apply H or H**T from the Right
//> \endverbatim
//>
//> \param[in] TRANS
//> \verbatim
//> TRANS is CHARACTER*1
//> = 'N': apply H (No transpose)
//> = 'T': apply H**T (Transpose)
//> \endverbatim
//>
//> \param[in] DIRECT
//> \verbatim
//> DIRECT is CHARACTER*1
//> Indicates how H is formed from a product of elementary
//> reflectors
//> = 'F': H = H(1) H(2) . . . H(k) (Forward)
//> = 'B': H = H(k) . . . H(2) H(1) (Backward)
//> \endverbatim
//>
//> \param[in] STOREV
//> \verbatim
//> STOREV is CHARACTER*1
//> Indicates how the vectors which define the elementary
//> reflectors are stored:
//> = 'C': Columnwise
//> = 'R': Rowwise
//> \endverbatim
//>
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix C.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix C.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> The order of the matrix T (= the number of elementary
//> reflectors whose product defines the block reflector).
//> If SIDE = 'L', M >= K >= 0;
//> if SIDE = 'R', N >= K >= 0.
//> \endverbatim
//>
//> \param[in] V
//> \verbatim
//> V is DOUBLE PRECISION array, dimension
//> (LDV,K) if STOREV = 'C'
//> (LDV,M) if STOREV = 'R' and SIDE = 'L'
//> (LDV,N) if STOREV = 'R' and SIDE = 'R'
//> The matrix V. See Further Details.
//> \endverbatim
//>
//> \param[in] LDV
//> \verbatim
//> LDV is INTEGER
//> The leading dimension of the array V.
//> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
//> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
//> if STOREV = 'R', LDV >= K.
//> \endverbatim
//>
//> \param[in] T
//> \verbatim
//> T is DOUBLE PRECISION array, dimension (LDT,K)
//> The triangular k by k matrix T in the representation of the
//> block reflector.
//> \endverbatim
//>
//> \param[in] LDT
//> \verbatim
//> LDT is INTEGER
//> The leading dimension of the array T. LDT >= K.
//> \endverbatim
//>
//> \param[in,out] C
//> \verbatim
//> C is DOUBLE PRECISION array, dimension (LDC,N)
//> On entry, the m by n matrix C.
//> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
//> \endverbatim
//>
//> \param[in] LDC
//> \verbatim
//> LDC is INTEGER
//> The leading dimension of the array C. LDC >= max(1,M).
//> \endverbatim
//>
//> \param[out] WORK
//> \verbatim
//> WORK is DOUBLE PRECISION array, dimension (LDWORK,K)
//> \endverbatim
//>
//> \param[in] LDWORK
//> \verbatim
//> LDWORK is INTEGER
//> The leading dimension of the array WORK.
//> If SIDE = 'L', LDWORK >= max(1,N);
//> if SIDE = 'R', LDWORK >= max(1,M).
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date June 2013
//
//> \ingroup doubleOTHERauxiliary
//
//> \par Further Details:
// =====================
//>
//> \verbatim
//>
//> The shape of the matrix V and the storage of the vectors which define
//> the H(i) is best illustrated by the following example with n = 5 and
//> k = 3. The elements equal to 1 are not stored; the corresponding
//> array elements are modified but restored on exit. The rest of the
//> array is not used.
//>
//> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
//>
//> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
//> ( v1 1 ) ( 1 v2 v2 v2 )
//> ( v1 v2 1 ) ( 1 v3 v3 )
//> ( v1 v2 v3 )
//> ( v1 v2 v3 )
//>
//> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
//>
//> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
//> ( v1 v2 v3 ) ( v2 v2 v2 1 )
//> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
//> ( 1 v3 )
//> ( 1 )
//> \endverbatim
//>
// =====================================================================
/* Subroutine */ int dlarfb_(char *side, char *trans, char *direct, char *
storev, int *m, int *n, int *k, double *v, int *ldv, double *t, int *
ldt, double *c__, int *ldc, double *work, int *ldwork)
{
// Table of constant values
int c__1 = 1;
double c_b14 = 1.;
double c_b25 = -1.;
// System generated locals
int c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
work_offset, i__1, i__2;
// Local variables
int i__, j;
extern /* Subroutine */ int dgemm_(char *, char *, int *, int *, int *,
double *, double *, int *, double *, int *, double *, double *,
int *);
extern int lsame_(char *, char *);
extern /* Subroutine */ int dcopy_(int *, double *, int *, double *, int *
), dtrmm_(char *, char *, char *, char *, int *, int *, double *,
double *, int *, double *, int *);
char transt[1+1]={'\0'};
//
// -- LAPACK auxiliary routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// June 2013
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Functions ..
// ..
// .. External Subroutines ..
// ..
// .. Executable Statements ..
//
// Quick return if possible
//
// Parameter adjustments
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
work_dim1 = *ldwork;
work_offset = 1 + work_dim1;
work -= work_offset;
// Function Body
if (*m <= 0 || *n <= 0) {
return 0;
}
if (lsame_(trans, "N")) {
*(unsigned char *)transt = 'T';
} else {
*(unsigned char *)transt = 'N';
}
if (lsame_(storev, "C")) {
if (lsame_(direct, "F")) {
//
// Let V = ( V1 ) (first K rows)
// ( V2 )
// where V1 is unit lower triangular.
//
if (lsame_(side, "L")) {
//
// Form H * C or H**T * C where C = ( C1 )
// ( C2 )
//
// W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
//
// W := C1**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
&c__1);
// L10:
}
//
// W := W * V1
//
dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
&v[v_offset], ldv, &work[work_offset], ldwork);
if (*m > *k) {
//
// W := W + C2**T * V2
//
i__1 = *m - *k;
dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1],
ldv, &c_b14, &work[work_offset], ldwork);
}
//
// W := W * T**T or W * T
//
dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - V * W**T
//
if (*m > *k) {
//
// C2 := C2 - V2 * W**T
//
i__1 = *m - *k;
dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
v[*k + 1 + v_dim1], ldv, &work[work_offset],
ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
}
//
// W := W * V1**T
//
dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
v[v_offset], ldv, &work[work_offset], ldwork);
//
// C1 := C1 - W**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
// L20:
}
// L30:
}
} else if (lsame_(side, "R")) {
//
// Form C * H or C * H**T where C = ( C1 C2 )
//
// W := C * V = (C1*V1 + C2*V2) (stored in WORK)
//
// W := C1
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
work_dim1 + 1], &c__1);
// L40:
}
//
// W := W * V1
//
dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
&v[v_offset], ldv, &work[work_offset], ldwork);
if (*n > *k) {
//
// W := W + C2 * V2
//
i__1 = *n - *k;
dgemm_("No transpose", "No transpose", m, k, &i__1, &
c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
1 + v_dim1], ldv, &c_b14, &work[work_offset],
ldwork);
}
//
// W := W * T or W * T**T
//
dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - W * V**T
//
if (*n > *k) {
//
// C2 := C2 - W * V2**T
//
i__1 = *n - *k;
dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
work[work_offset], ldwork, &v[*k + 1 + v_dim1],
ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc);
}
//
// W := W * V1**T
//
dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
v[v_offset], ldv, &work[work_offset], ldwork);
//
// C1 := C1 - W
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
// L50:
}
// L60:
}
}
} else {
//
// Let V = ( V1 )
// ( V2 ) (last K rows)
// where V2 is unit upper triangular.
//
if (lsame_(side, "L")) {
//
// Form H * C or H**T * C where C = ( C1 )
// ( C2 )
//
// W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
//
// W := C2**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
work_dim1 + 1], &c__1);
// L70:
}
//
// W := W * V2
//
dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
&v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
ldwork);
if (*m > *k) {
//
// W := W + C1**T * V1
//
i__1 = *m - *k;
dgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
work[work_offset], ldwork);
}
//
// W := W * T**T or W * T
//
dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - V * W**T
//
if (*m > *k) {
//
// C1 := C1 - V1 * W**T
//
i__1 = *m - *k;
dgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
v[v_offset], ldv, &work[work_offset], ldwork, &
c_b14, &c__[c_offset], ldc);
}
//
// W := W * V2**T
//
dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
ldwork);
//
// C2 := C2 - W**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
work_dim1];
// L80:
}
// L90:
}
} else if (lsame_(side, "R")) {
//
// Form C * H or C * H**T where C = ( C1 C2 )
//
// W := C * V = (C1*V1 + C2*V2) (stored in WORK)
//
// W := C2
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
j * work_dim1 + 1], &c__1);
// L100:
}
//
// W := W * V2
//
dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
&v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
ldwork);
if (*n > *k) {
//
// W := W + C1 * V1
//
i__1 = *n - *k;
dgemm_("No transpose", "No transpose", m, k, &i__1, &
c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, &
c_b14, &work[work_offset], ldwork);
}
//
// W := W * T or W * T**T
//
dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - W * V**T
//
if (*n > *k) {
//
// C1 := C1 - W * V1**T
//
i__1 = *n - *k;
dgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
work[work_offset], ldwork, &v[v_offset], ldv, &
c_b14, &c__[c_offset], ldc);
}
//
// W := W * V2**T
//
dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
ldwork);
//
// C2 := C2 - W
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
work_dim1];
// L110:
}
// L120:
}
}
}
} else if (lsame_(storev, "R")) {
if (lsame_(direct, "F")) {
//
// Let V = ( V1 V2 ) (V1: first K columns)
// where V1 is unit upper triangular.
//
if (lsame_(side, "L")) {
//
// Form H * C or H**T * C where C = ( C1 )
// ( C2 )
//
// W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
//
// W := C1**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
&c__1);
// L130:
}
//
// W := W * V1**T
//
dtrmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
v[v_offset], ldv, &work[work_offset], ldwork);
if (*m > *k) {
//
// W := W + C2**T * V2**T
//
i__1 = *m - *k;
dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 +
1], ldv, &c_b14, &work[work_offset], ldwork);
}
//
// W := W * T**T or W * T
//
dtrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - V**T * W**T
//
if (*m > *k) {
//
// C2 := C2 - V2**T * W**T
//
i__1 = *m - *k;
dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[(
*k + 1) * v_dim1 + 1], ldv, &work[work_offset],
ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
}
//
// W := W * V1
//
dtrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
&v[v_offset], ldv, &work[work_offset], ldwork);
//
// C1 := C1 - W**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
// L140:
}
// L150:
}
} else if (lsame_(side, "R")) {
//
// Form C * H or C * H**T where C = ( C1 C2 )
//
// W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
//
// W := C1
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
work_dim1 + 1], &c__1);
// L160:
}
//
// W := W * V1**T
//
dtrmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
v[v_offset], ldv, &work[work_offset], ldwork);
if (*n > *k) {
//
// W := W + C2 * V2**T
//
i__1 = *n - *k;
dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) *
v_dim1 + 1], ldv, &c_b14, &work[work_offset],
ldwork);
}
//
// W := W * T or W * T**T
//
dtrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - W * V
//
if (*n > *k) {
//
// C2 := C2 - W * V2
//
i__1 = *n - *k;
dgemm_("No transpose", "No transpose", m, &i__1, k, &
c_b25, &work[work_offset], ldwork, &v[(*k + 1) *
v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1
+ 1], ldc);
}
//
// W := W * V1
//
dtrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
&v[v_offset], ldv, &work[work_offset], ldwork);
//
// C1 := C1 - W
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
// L170:
}
// L180:
}
}
} else {
//
// Let V = ( V1 V2 ) (V2: last K columns)
// where V2 is unit lower triangular.
//
if (lsame_(side, "L")) {
//
// Form H * C or H**T * C where C = ( C1 )
// ( C2 )
//
// W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
//
// W := C2**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
work_dim1 + 1], &c__1);
// L190:
}
//
// W := W * V2**T
//
dtrmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
, ldwork);
if (*m > *k) {
//
// W := W + C1**T * V1**T
//
i__1 = *m - *k;
dgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
work[work_offset], ldwork);
}
//
// W := W * T**T or W * T
//
dtrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - V**T * W**T
//
if (*m > *k) {
//
// C1 := C1 - V1**T * W**T
//
i__1 = *m - *k;
dgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[
v_offset], ldv, &work[work_offset], ldwork, &
c_b14, &c__[c_offset], ldc);
}
//
// W := W * V2
//
dtrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
&v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
work_offset], ldwork);
//
// C2 := C2 - W**T
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
work_dim1];
// L200:
}
// L210:
}
} else if (lsame_(side, "R")) {
//
// Form C * H or C * H' where C = ( C1 C2 )
//
// W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
//
// W := C2
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
j * work_dim1 + 1], &c__1);
// L220:
}
//
// W := W * V2**T
//
dtrmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
, ldwork);
if (*n > *k) {
//
// W := W + C1 * V1**T
//
i__1 = *n - *k;
dgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
work[work_offset], ldwork);
}
//
// W := W * T or W * T**T
//
dtrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
t_offset], ldt, &work[work_offset], ldwork);
//
// C := C - W * V
//
if (*n > *k) {
//
// C1 := C1 - W * V1
//
i__1 = *n - *k;
dgemm_("No transpose", "No transpose", m, &i__1, k, &
c_b25, &work[work_offset], ldwork, &v[v_offset],
ldv, &c_b14, &c__[c_offset], ldc);
}
//
// W := W * V2
//
dtrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
&v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
work_offset], ldwork);
//
// C1 := C1 - W
//
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
work_dim1];
// L230:
}
// L240:
}
}
}
}
return 0;
//
// End of DLARFB
//
} // dlarfb_