opencv/modules/dnn/perf/perf_convolution.cpp

1009 lines
99 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/utils/configuration.private.hpp>
namespace opencv_test {
// Flops_Kernel_Input_OutCN_Group_Stride_Pad_Dilation_PadAdjust_PadMode_Bias
struct TestSize_ {
int width, height;
operator Size() const { return Size(width, height); }
};
struct ConvParam_t {
struct TestSize_ kernel;
struct BlobShape { int dims[4]; } shapeIn;
int outCN;
int groups;
struct TestSize_ stride;
struct TestSize_ dilation;
struct TestSize_ pad;
struct TestSize_ padAdjust;
const char* padMode;
bool hasBias;
double declared_flops;
};
// Details: #12142
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
// Last update: 2023-11
// Extended and classified: #24547
static const ConvParam_t testConvolution_Configs[] = {
2021-09-10 20:42:28 +08:00
/* GFLOPS 3.398 x 20 = 67.956 */ {{7, 7}, {{1, 128, 46, 46}}, 128, 1, {1, 1}, {1, 1}, {3, 3}, {0, 0}, "", true, 3397788160.},
/* GFLOPS 16.987 x 3 = 50.962 */ {{5, 5}, {{1, 1152, 16, 16}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 16987226112.},
/* GFLOPS 23.122 x 2 = 46.244 */ {{5, 5}, {{1, 672, 32, 32}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 23121788928.},
/* GFLOPS 4.566 x 5 = 22.828 */ {{7, 7}, {{1, 172, 46, 46}}, 128, 1, {1, 1}, {1, 1}, {3, 3}, {0, 0}, "", true, 4565684736.},
/* GFLOPS 11.797 x 1 = 11.797 */ {{5, 5}, {{1, 240, 64, 64}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 11797463040.},
/* GFLOPS 11.797 x 1 = 11.797 */ {{5, 5}, {{1, 480, 32, 32}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 11796971520.},
/* GFLOPS 5.780 x 1 = 5.780 */ {{5, 5}, {{1, 672, 32, 32}}, 672, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 5780447232.},
/* GFLOPS 4.247 x 1 = 4.247 */ {{5, 5}, {{1, 144, 128, 128}}, 144, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 4247322624.},
/* GFLOPS 3.407 x 1 = 3.407 */ {{3, 3}, {{1, 512, 19, 19}}, 1024, 1, {1, 1}, {6, 6}, {6, 6}, {0, 0}, "", true, 3407193088.},
/* GFLOPS 1.598 x 2 = 3.195 */ {{3, 3}, {{1, 32, 416, 416}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1597652992.},
/* GFLOPS 1.596 x 2 = 3.193 */ {{3, 3}, {{1, 64, 208, 208}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1596268544.},
/* GFLOPS 1.596 x 2 = 3.191 */ {{3, 3}, {{1, 128, 104, 104}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595576320.},
/* GFLOPS 1.595 x 2 = 3.190 */ {{3, 3}, {{1, 512, 26, 26}}, 1024, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595057152.},
/* GFLOPS 2.719 x 1 = 2.719 */ {{3, 3}, {{1, 96, 256, 256}}, 96, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 2719481856.},
/* GFLOPS 1.995 x 1 = 1.995 */ {{9, 9}, {{1, 3, 320, 400}}, 32, 1, {1, 1}, {1, 1}, {4, 4}, {0, 0}, "", true, 1994752000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.945 x 2 = 1.891 */ {{3, 3}, {{1, 32, 320, 320}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 945356800.},
/* GFLOPS 0.945 x 2 = 1.889 */ {{3, 3}, {{1, 64, 160, 160}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 944537600.},
/* GFLOPS 0.944 x 2 = 1.888 */ {{3, 3}, {{1, 128, 80, 80}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 944128000.},
/* GFLOPS 0.944 x 2 = 1.888 */ {{3, 3}, {{1, 256, 40, 40}}, 512, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 943923200.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 1.195 x 1 = 1.195 */ {{9, 9}, {{1, 32, 240, 320}}, 3, 1, {1, 1}, {1, 1}, {4, 4}, {0, 0}, "", true, 1194624000.},
/* GFLOPS 1.182 x 1 = 1.182 */ {{3, 3}, {{1, 32, 320, 400}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1181696000.},
/* GFLOPS 1.181 x 1 = 1.181 */ {{3, 3}, {{1, 64, 160, 200}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1180672000.},
/* GFLOPS 1.062 x 1 = 1.062 */ {{3, 3}, {{1, 240, 64, 64}}, 240, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1061928960.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.237 x 4 = 0.947 */ {{3, 3}, {{1, 16, 320, 320}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 236748800.},
/* GFLOPS 0.236 x 4 = 0.945 */ {{3, 3}, {{1, 32, 160, 160}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 236339200.},
/* GFLOPS 0.236 x 4 = 0.945 */ {{3, 3}, {{1, 64, 80, 80}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 236134400.},
/* GFLOPS 0.896 x 1 = 0.896 */ {{5, 5}, {{1, 96, 27, 27}}, 256, 2, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 895981824.},
/* GFLOPS 0.850 x 1 = 0.850 */ {{7, 7}, {{1, 3, 600, 800}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 849600000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.356 x 2 = 0.711 */ {{6, 6}, {{1, 3, 640, 640}}, 16, 1, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 355532800.},
/* GFLOPS 0.701 x 1 = 0.701 */ {{3, 3}, {{1, 128, 75, 100}}, 160, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 700720000.},
/* GFLOPS 0.483 x 1 = 0.483 */ {{7, 7}, {{1, 3, 320, 320}}, 64, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", false, 483328000.},
/* GFLOPS 0.472 x 1 = 0.472 */ {{3, 3}, {{1, 512, 19, 19}}, 512, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 471910400.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 426037760.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 425945344.},
/* GFLOPS 0.415 x 1 = 0.415 */ {{3, 3}, {{1, 64, 150, 150}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 415080000.},
/* GFLOPS 0.399 x 1 = 0.399 */ {{3, 3}, {{1, 32, 208, 208}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 399413248.},
/* GFLOPS 0.090 x 4 = 0.360 */ {{3, 3}, {{1, 3, 640, 640}}, 16, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 90112000.},
/* GFLOPS 0.170 x 2 = 0.340 */ {{3, 3}, {{1, 64, 96, 96}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 170016768.},
/* GFLOPS 0.315 x 1 = 0.315 */ {{3, 3}, {{1, 96, 75, 100}}, 96, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 315369600.},
/* GFLOPS 0.240 x 1 = 0.240 */ {{3, 3}, {{1, 192, 38, 38}}, 192, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 239611584.},
/* GFLOPS 0.237 x 1 = 0.237 */ {{7, 7}, {{1, 3, 224, 224}}, 64, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", false, 236830720.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 128, 38, 38}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 213018880.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 128, 19, 19}}, 256, 1, {1, 1}, {2, 2}, {2, 2}, {0, 0}, "", false, 213018880.},
/* GFLOPS 0.212 x 1 = 0.212 */ {{7, 7}, {{1, 3, 300, 300}}, 32, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", true, 212400000.},
/* GFLOPS 0.211 x 1 = 0.211 */ {{11, 11}, {{1, 3, 227, 227}}, 96, 1, {4, 4}, {1, 1}, {0, 0}, {0, 0}, "", true, 211120800.},
/* GFLOPS 0.159 x 1 = 0.159 */ {{7, 7}, {{1, 3, 300, 300}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 159300000.},
/* GFLOPS 0.133 x 1 = 0.133 */ {{3, 3}, {{1, 128, 38, 38}}, 160, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 133136800.},
/* GFLOPS 0.120 x 1 = 0.120 */ {{5, 5}, {{1, 32, 28, 28}}, 96, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 120497664.},
/* GFLOPS 0.060 x 2 = 0.119 */ {{3, 3}, {{1, 3, 736, 736}}, 8, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 59586560.},
/* GFLOPS 0.118 x 1 = 0.118 */ {{3, 3}, {{1, 64, 80, 80}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 118067200.},
/* GFLOPS 0.118 x 1 = 0.118 */ {{3, 3}, {{1, 128, 40, 40}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 118016000.},
/* GFLOPS 0.115 x 1 = 0.115 */ {{3, 3}, {{1, 3, 512, 512}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 115343360.},
/* GFLOPS 0.107 x 1 = 0.107 */ {{3, 3}, {{1, 32, 75, 75}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 106648064.},
/* GFLOPS 0.050 x 2 = 0.101 */ {{2, 2}, {{1, 512, 2, 25}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 50343936.},
/* GFLOPS 0.044 x 2 = 0.087 */ {{5, 5}, {{1, 3, 192, 192}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 43608800.},
/* GFLOPS 0.042 x 2 = 0.085 */ {{3, 3}, {{1, 128, 48, 48}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 42485760.},
/* GFLOPS 0.021 x 4 = 0.084 */ {{5, 1}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {2, 0}, {0, 0}, "", false, 21037056.},
/* GFLOPS 0.021 x 4 = 0.084 */ {{1, 5}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {0, 2}, {0, 0}, "", true, 21037056.},
/* GFLOPS 0.076 x 1 = 0.076 */ {{3, 3}, {{1, 3, 416, 416}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 76144640.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {8, 8}, {8, 8}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {4, 4}, {4, 4}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {2, 2}, {2, 2}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {16, 16}, {16, 16}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.032 x 2 = 0.065 */ {{3, 3}, {{1, 3, 192, 192}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 32440320.},
/* GFLOPS 0.060 x 1 = 0.060 */ {{3, 3}, {{1, 96, 38, 38}}, 96, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 59920224.},
/* GFLOPS 0.059 x 1 = 0.059 */ {{3, 3}, {{1, 256, 10, 10}}, 512, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 58995200.},
/* GFLOPS 0.045 x 1 = 0.045 */ {{3, 3}, {{1, 3, 227, 227}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 44946880.},
/* GFLOPS 0.044 x 1 = 0.044 */ {{3, 3}, {{1, 128, 19, 19}}, 192, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 44256000.},
/* GFLOPS 0.043 x 1 = 0.043 */ {{7, 7}, {{1, 3, 96, 96}}, 64, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", true, 43499520.},
/* GFLOPS 0.022 x 2 = 0.043 */ {{3, 3}, {{1, 3, 224, 224}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 21684960.},
/* GFLOPS 0.022 x 2 = 0.043 */ {{3, 3}, {{1, 3, 258, 258}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 21626880.},
/* GFLOPS 0.040 x 1 = 0.040 */ {{3, 3}, {{1, 3, 300, 300}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 39600000.},
/* GFLOPS 0.034 x 1 = 0.034 */ {{2, 2}, {{1, 64, 64, 128}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 33619968.},
/* GFLOPS 0.016 x 2 = 0.033 */ {{3, 3}, {{1, 3, 224, 224}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 16263720.},
/* GFLOPS 0.005 x 6 = 0.032 */ {{3, 3}, {{1, 16, 48, 48}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5326848.},
/* GFLOPS 0.005 x 6 = 0.032 */ {{3, 3}, {{1, 32, 24, 24}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5317632.},
/* GFLOPS 0.015 x 2 = 0.030 */ {{5, 5}, {{1, 24, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 15065344.},
/* GFLOPS 0.029 x 1 = 0.029 */ {{3, 3}, {{1, 256, 10, 10}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 29497600.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{3, 3}, {{1, 3, 256, 512}}, 13, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 23429120.},
/* GFLOPS 0.017 x 1 = 0.017 */ {{2, 2}, {{1, 16, 128, 256}}, 16, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 16908288.},
/* GFLOPS 0.003 x 6 = 0.016 */ {{3, 3}, {{1, 16, 48, 48}}, 16, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2663424.},
/* GFLOPS 0.015 x 1 = 0.015 */ {{5, 5}, {{1, 48, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 15059072.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 3, 256, 256}}, 6, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5406720.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 6, 128, 128}}, 12, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5357568.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 12, 64, 64}}, 24, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5332992.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 24, 32, 32}}, 48, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5320704.},
/* GFLOPS 0.003 x 4 = 0.011 */ {{3, 3}, {{1, 16, 24, 24}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2663424.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{5, 5}, {{1, 32, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 10041472.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{5, 5}, {{1, 16, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 7535808.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{3, 3}, {{1, 160, 6, 6}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 6637824.},
/* GFLOPS 0.003 x 2 = 0.005 */ {{3, 3}, {{1, 32, 24, 24}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2658816.},
/* GFLOPS 0.003 x 2 = 0.005 */ {{3, 3}, {{1, 32, 12, 12}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2658816.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 16, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 3691008.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 32, 6, 6}}, 64, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 3688704.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 32, 12, 12}}, 64, 1, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 3688704.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 64, 6, 6}}, 128, 1, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 3687552.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 3, 128, 128}}, 6, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1351680.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 6, 64, 64}}, 12, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1339392.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 12, 32, 32}}, 24, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1333248.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 16, 12, 12}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1331712.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 24, 16, 16}}, 48, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1330176.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{3, 3}, {{1, 128, 3, 3}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 2360320.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{3, 3}, {{1, 128, 3, 3}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1180160.},
/* GFLOPS 0.001 x 2 = 0.001 */ {{3, 3}, {{1, 16, 24, 24}}, 16, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 665856.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{2, 2}, {{1, 192, 2, 2}}, 195, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 299715.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{2, 2}, {{1, 192, 2, 2}}, 117, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 179829.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 64, 2, 2}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 147584.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 64, 2, 2}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 73792.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{2, 2}, {{1, 192, 2, 2}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1537.},
};
static const ConvParam_t testConvolution_1x1_Configs[] = {
/* GFLOPS 0.280 x 5 = 1.402 */ {{1, 1}, {{1, 576, 38, 50}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 280409600.},
/* GFLOPS 0.210 x 6 = 1.262 */ {{1, 1}, {{1, 576, 38, 50}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 210307200.},
/* GFLOPS 0.357 x 3 = 1.072 */ {{1, 1}, {{1, 64, 208, 208}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 357187584.},
/* GFLOPS 0.246 x 4 = 0.985 */ {{1, 1}, {{1, 256, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 246240000.},
/* GFLOPS 0.053 x 18 = 0.947 */ {{1, 1}, {{1, 128, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 52633600.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.712 x 1 = 0.712 */ {{1, 1}, {{1, 128, 208, 208}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 711606272.},
/* GFLOPS 0.178 x 4 = 0.712 */ {{1, 1}, {{1, 128, 104, 104}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 177901568.},
/* GFLOPS 0.354 x 2 = 0.707 */ {{1, 1}, {{1, 256, 52, 52}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 353723760.},
/* GFLOPS 0.351 x 2 = 0.701 */ {{1, 1}, {{1, 576, 38, 50}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 350512000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.211 x 3 = 0.634 */ {{1, 1}, {{1, 64, 80, 80}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 211353600.},
/* GFLOPS 0.211 x 3 = 0.632 */ {{1, 1}, {{1, 128, 40, 40}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 210534400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.105 x 6 = 0.632 */ {{1, 1}, {{1, 128, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 105267200.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.210 x 3 = 0.630 */ {{1, 1}, {{1, 512, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 209920000.},
/* GFLOPS 0.615 x 1 = 0.615 */ {{1, 1}, {{1, 320, 75, 100}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 615360000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.044 x 14 = 0.609 */ {{1, 1}, {{1, 1632, 7, 7}}, 272, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 43515920.},
/* GFLOPS 0.185 x 3 = 0.554 */ {{1, 1}, {{1, 192, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 184800000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.266 x 2 = 0.532 */ {{1, 1}, {{1, 240, 48, 48}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 265973760.},
/* GFLOPS 0.491 x 1 = 0.491 */ {{1, 1}, {{1, 576, 38, 50}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 490716800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.079 x 6 = 0.473 */ {{1, 1}, {{1, 192, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 78848000.},
/* GFLOPS 0.079 x 6 = 0.472 */ {{1, 1}, {{1, 384, 20, 20}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 78745600.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.155 x 3 = 0.464 */ {{1, 1}, {{1, 112, 32, 32}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 154828800.},
/* GFLOPS 0.114 x 4 = 0.454 */ {{1, 1}, {{1, 192, 16, 16}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 113541120.},
/* GFLOPS 0.089 x 5 = 0.443 */ {{1, 1}, {{1, 512, 13, 13}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 88691200.},
/* GFLOPS 0.428 x 1 = 0.428 */ {{1, 1}, {{1, 64, 64, 64}}, 810, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 427991040.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.053 x 8 = 0.426 */ {{1, 1}, {{1, 32, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 53248000.},
/* GFLOPS 0.211 x 2 = 0.423 */ {{1, 1}, {{1, 64, 160, 160}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 211353600.},
/* GFLOPS 0.106 x 4 = 0.423 */ {{1, 1}, {{1, 64, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 105676800.},
/* GFLOPS 0.421 x 1 = 0.421 */ {{1, 1}, {{1, 576, 38, 50}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 420614400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.211 x 2 = 0.421 */ {{1, 1}, {{1, 64, 80, 80}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 210528000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.420 x 1 = 0.420 */ {{1, 1}, {{1, 256, 40, 40}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 420249600.},
/* GFLOPS 0.420 x 1 = 0.420 */ {{1, 1}, {{1, 1024, 10, 10}}, 2048, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 419635200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.210 x 2 = 0.420 */ {{1, 1}, {{1, 256, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 210124800.},
/* GFLOPS 0.376 x 1 = 0.376 */ {{1, 1}, {{1, 24, 300, 400}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 376320000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.179 x 2 = 0.357 */ {{1, 1}, {{1, 64, 208, 208}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 178593792.},
/* GFLOPS 0.089 x 4 = 0.357 */ {{1, 1}, {{1, 64, 104, 104}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 89296896.},
/* GFLOPS 0.356 x 1 = 0.356 */ {{1, 1}, {{1, 128, 104, 104}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 355803136.},
/* GFLOPS 0.113 x 3 = 0.340 */ {{1, 1}, {{1, 1152, 16, 16}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 113295360.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.080 x 4 = 0.321 */ {{1, 1}, {{1, 56, 46, 46}}, 336, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 80340288.},
/* GFLOPS 0.158 x 2 = 0.315 */ {{1, 1}, {{1, 192, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 157696000.},
/* GFLOPS 0.157 x 2 = 0.315 */ {{1, 1}, {{1, 384, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 157491200.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.154 x 2 = 0.309 */ {{1, 1}, {{1, 672, 32, 32}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 154255360.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.103 x 3 = 0.309 */ {{1, 1}, {{1, 512, 7, 7}}, 2048, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 102860800.},
/* GFLOPS 0.308 x 1 = 0.308 */ {{1, 1}, {{1, 320, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 307680000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.034 x 9 = 0.304 */ {{1, 1}, {{1, 64, 64, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 33816576.},
/* GFLOPS 0.017 x 17 = 0.290 */ {{1, 1}, {{1, 32, 32, 64}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 17039360.},
/* GFLOPS 0.017 x 16 = 0.269 */ {{1, 1}, {{1, 128, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 16842752.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.266 x 1 = 0.266 */ {{1, 1}, {{1, 768, 26, 26}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 265987072.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.132 x 2 = 0.263 */ {{1, 1}, {{1, 128, 80, 80}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 131584000.},
/* GFLOPS 0.026 x 10 = 0.263 */ {{1, 1}, {{1, 128, 40, 40}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26316800.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.262 x 1 = 0.262 */ {{1, 1}, {{1, 2560, 20, 20}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 262195200.},
/* GFLOPS 0.248 x 1 = 0.248 */ {{1, 1}, {{1, 64, 150, 200}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 247680000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.041 x 6 = 0.245 */ {{1, 1}, {{1, 80, 23, 23}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 40881120.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.079 x 3 = 0.237 */ {{1, 1}, {{1, 80, 32, 32}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 79134720.},
/* GFLOPS 0.116 x 2 = 0.231 */ {{1, 1}, {{1, 24, 128, 128}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 115605504.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.107 x 2 = 0.215 */ {{1, 1}, {{1, 16, 184, 184}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 107255808.},
/* GFLOPS 0.106 x 2 = 0.213 */ {{1, 1}, {{1, 32, 160, 160}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 106496000.},
/* GFLOPS 0.105 x 2 = 0.210 */ {{1, 1}, {{1, 128, 40, 40}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 104856000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.208 x 1 = 0.208 */ {{1, 1}, {{1, 16, 256, 256}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 207618048.},
/* GFLOPS 0.206 x 1 = 0.206 */ {{1, 1}, {{1, 256, 56, 56}}, 512, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 205922304.},
/* GFLOPS 0.206 x 1 = 0.206 */ {{1, 1}, {{1, 512, 28, 28}}, 1024, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 205721600.},
/* GFLOPS 0.206 x 1 = 0.206 */ {{1, 1}, {{1, 1024, 14, 14}}, 2048, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 205621248.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.103 x 2 = 0.206 */ {{1, 1}, {{1, 1024, 7, 7}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 102810624.},
/* GFLOPS 0.103 x 2 = 0.206 */ {{1, 1}, {{1, 2048, 7, 7}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 102785536.},
/* GFLOPS 0.201 x 1 = 0.201 */ {{1, 1}, {{1, 512, 14, 14}}, 1000, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 200900000.},
/* GFLOPS 0.190 x 1 = 0.190 */ {{1, 1}, {{1, 256, 38, 38}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 189637632.},
/* GFLOPS 0.047 x 4 = 0.190 */ {{1, 1}, {{1, 256, 38, 38}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 47409408.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.189 x 1 = 0.189 */ {{1, 1}, {{1, 1152, 16, 16}}, 320, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 188825600.},
/* GFLOPS 0.185 x 1 = 0.185 */ {{1, 1}, {{1, 128, 75, 75}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 185040000.},
/* GFLOPS 0.180 x 1 = 0.180 */ {{1, 1}, {{1, 224, 56, 56}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 180232192.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.045 x 4 = 0.179 */ {{1, 1}, {{1, 16, 184, 184}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 44689920.},
/* GFLOPS 0.089 x 2 = 0.177 */ {{1, 1}, {{1, 24, 112, 112}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 88510464.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.088 x 2 = 0.177 */ {{1, 1}, {{1, 1024, 13, 13}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 88301655.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.041 x 4 = 0.163 */ {{1, 1}, {{1, 480, 23, 23}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 40669520.},
/* GFLOPS 0.080 x 2 = 0.159 */ {{1, 1}, {{1, 336, 46, 46}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 79747808.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.080 x 2 = 0.159 */ {{1, 1}, {{1, 40, 64, 64}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 79626240.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.079 x 2 = 0.159 */ {{1, 1}, {{1, 48, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 79462400.},
/* GFLOPS 0.079 x 2 = 0.158 */ {{1, 1}, {{1, 96, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 79052800.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.079 x 2 = 0.157 */ {{1, 1}, {{1, 480, 32, 32}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 78725120.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.074 x 2 = 0.147 */ {{1, 1}, {{1, 8, 368, 368}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 73670656.},
/* GFLOPS 0.072 x 2 = 0.144 */ {{1, 1}, {{1, 1024, 10, 10}}, 352, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 72124800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.072 x 2 = 0.143 */ {{1, 1}, {{1, 1632, 7, 7}}, 448, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 71673280.},
/* GFLOPS 0.140 x 1 = 0.140 */ {{1, 1}, {{1, 576, 38, 50}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 140204800.},
/* GFLOPS 0.017 x 8 = 0.138 */ {{1, 1}, {{1, 16, 64, 128}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 17301504.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.044 x 3 = 0.133 */ {{1, 1}, {{1, 512, 13, 13}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 44345600.},
/* GFLOPS 0.129 x 1 = 0.129 */ {{1, 1}, {{1, 160, 56, 56}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 128851968.},
/* GFLOPS 0.118 x 1 = 0.118 */ {{1, 1}, {{1, 320, 38, 38}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 118477312.},
/* GFLOPS 0.039 x 3 = 0.118 */ {{1, 1}, {{1, 1024, 10, 10}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 39340800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.017 x 7 = 0.118 */ {{1, 1}, {{1, 64, 64, 128}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 16908288.},
/* GFLOPS 0.019 x 6 = 0.115 */ {{1, 1}, {{1, 32, 96, 96}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 19169280.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.114 x 1 = 0.114 */ {{1, 1}, {{1, 144, 128, 128}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 113639424.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.057 x 2 = 0.114 */ {{1, 1}, {{1, 240, 46, 46}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 56996576.},
/* GFLOPS 0.056 x 2 = 0.113 */ {{1, 1}, {{1, 448, 7, 7}}, 1280, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 56259840.},
/* GFLOPS 0.112 x 1 = 0.112 */ {{1, 1}, {{1, 1024, 10, 10}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 111875400.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.110 x 1 = 0.110 */ {{1, 1}, {{1, 480, 32, 32}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 110215168.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.054 x 2 = 0.108 */ {{1, 1}, {{1, 16, 320, 320}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 54067200.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.107 x 1 = 0.107 */ {{1, 1}, {{1, 64, 32, 32}}, 810, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 106997760.},
/* GFLOPS 0.036 x 3 = 0.107 */ {{1, 1}, {{1, 192, 38, 38}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 35580160.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.027 x 4 = 0.106 */ {{1, 1}, {{1, 32, 160, 160}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26624000.},
/* GFLOPS 0.027 x 4 = 0.106 */ {{1, 1}, {{1, 24, 92, 92}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26543104.},
/* GFLOPS 0.026 x 4 = 0.106 */ {{1, 1}, {{1, 64, 80, 80}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26419200.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.105 x 1 = 0.105 */ {{1, 1}, {{1, 256, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 105062400.},
/* GFLOPS 0.105 x 1 = 0.105 */ {{1, 1}, {{1, 1024, 10, 10}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 104908800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.052 x 2 = 0.105 */ {{1, 1}, {{1, 256, 20, 20}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 52326000.},
/* GFLOPS 0.026 x 4 = 0.105 */ {{1, 1}, {{1, 64, 92, 92}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26204544.},
/* GFLOPS 0.052 x 2 = 0.104 */ {{1, 1}, {{1, 32, 112, 112}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 52183040.},
/* GFLOPS 0.051 x 2 = 0.103 */ {{1, 1}, {{1, 512, 7, 7}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 51430400.},
/* GFLOPS 0.101 x 1 = 0.101 */ {{1, 1}, {{1, 512, 19, 19}}, 273, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 101016825.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.008 x 12 = 0.101 */ {{1, 1}, {{1, 64, 32, 32}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 8454144.},
/* GFLOPS 0.050 x 2 = 0.100 */ {{1, 1}, {{1, 24, 92, 92}}, 120, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 49768320.},
/* GFLOPS 0.095 x 1 = 0.095 */ {{1, 1}, {{1, 128, 38, 38}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 95003648.},
/* GFLOPS 0.094 x 1 = 0.094 */ {{1, 1}, {{1, 32, 150, 150}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 93600000.},
/* GFLOPS 0.093 x 1 = 0.093 */ {{1, 1}, {{1, 512, 38, 50}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 93480000.},
/* GFLOPS 0.093 x 1 = 0.093 */ {{1, 1}, {{1, 576, 19, 19}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 93236192.},
/* GFLOPS 0.093 x 1 = 0.093 */ {{1, 1}, {{1, 64, 75, 75}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 92880000.},
/* GFLOPS 0.092 x 1 = 0.092 */ {{1, 1}, {{1, 192, 75, 100}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 92400000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.031 x 3 = 0.092 */ {{1, 1}, {{1, 160, 10, 10}}, 960, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 30816000.},
/* GFLOPS 0.044 x 2 = 0.088 */ {{1, 1}, {{1, 40, 184, 184}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 43877376.},
/* GFLOPS 0.044 x 2 = 0.087 */ {{1, 1}, {{1, 272, 7, 7}}, 1632, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 43582560.},
/* GFLOPS 0.042 x 2 = 0.084 */ {{1, 1}, {{1, 672, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 42179200.},
/* GFLOPS 0.082 x 1 = 0.082 */ {{1, 1}, {{1, 320, 10, 10}}, 1280, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 82048000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.041 x 2 = 0.082 */ {{1, 1}, {{1, 40, 46, 46}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 41135040.},
/* GFLOPS 0.040 x 2 = 0.080 */ {{1, 1}, {{1, 24, 92, 92}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 39814656.},
/* GFLOPS 0.013 x 6 = 0.080 */ {{1, 1}, {{1, 32, 80, 80}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13312000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.079 x 1 = 0.079 */ {{1, 1}, {{1, 240, 64, 64}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 78807040.},
/* GFLOPS 0.079 x 1 = 0.079 */ {{1, 1}, {{1, 384, 40, 40}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 78745600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.040 x 2 = 0.079 */ {{1, 1}, {{1, 24, 75, 75}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 39690000.},
/* GFLOPS 0.077 x 1 = 0.077 */ {{1, 1}, {{1, 96, 56, 56}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 77471744.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.076 x 1 = 0.076 */ {{1, 1}, {{1, 96, 128, 128}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 75890688.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.038 x 2 = 0.076 */ {{1, 1}, {{1, 64, 48, 48}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 38043648.},
/* GFLOPS 0.018 x 4 = 0.074 */ {{1, 1}, {{1, 8, 368, 368}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 18417664.},
/* GFLOPS 0.071 x 1 = 0.071 */ {{1, 1}, {{1, 16, 150, 150}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 71280000.},
/* GFLOPS 0.071 x 1 = 0.071 */ {{1, 1}, {{1, 24, 150, 150}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 70560000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.068 x 1 = 0.068 */ {{1, 1}, {{1, 32, 256, 256}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 68157440.},
/* GFLOPS 0.066 x 1 = 0.066 */ {{1, 1}, {{1, 672, 16, 16}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 66109440.},
/* GFLOPS 0.066 x 1 = 0.066 */ {{1, 1}, {{1, 1280, 10, 10}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 65561600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.033 x 2 = 0.066 */ {{1, 1}, {{1, 128, 40, 40}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 32896000.},
/* GFLOPS 0.016 x 4 = 0.066 */ {{1, 1}, {{1, 40, 46, 46}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16454016.},
/* GFLOPS 0.016 x 4 = 0.065 */ {{1, 1}, {{1, 96, 46, 46}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16335520.},
/* GFLOPS 0.061 x 1 = 0.061 */ {{1, 1}, {{1, 960, 10, 10}}, 320, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 61472000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.061 x 1 = 0.061 */ {{1, 1}, {{1, 512, 46, 46}}, 28, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 60729200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.031 x 2 = 0.061 */ {{1, 1}, {{1, 960, 10, 10}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 30736000.},
/* GFLOPS 0.059 x 1 = 0.059 */ {{1, 1}, {{1, 320, 38, 38}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 59238656.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.007 x 8 = 0.059 */ {{1, 1}, {{1, 112, 7, 7}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7408800.},
/* GFLOPS 0.010 x 6 = 0.058 */ {{1, 1}, {{1, 56, 16, 16}}, 336, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9719808.},
/* GFLOPS 0.010 x 6 = 0.058 */ {{1, 1}, {{1, 64, 14, 14}}, 384, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9709056.},
/* GFLOPS 0.028 x 2 = 0.057 */ {{1, 1}, {{1, 336, 23, 23}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 28481360.},
/* GFLOPS 0.007 x 8 = 0.057 */ {{1, 1}, {{1, 96, 8, 8}}, 576, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7114752.},
/* GFLOPS 0.027 x 2 = 0.054 */ {{1, 1}, {{1, 16, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 27033600.},
/* GFLOPS 0.018 x 3 = 0.054 */ {{1, 1}, {{1, 32, 38, 38}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 18021120.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.014 x 4 = 0.054 */ {{1, 1}, {{1, 16, 160, 160}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13516800.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 528, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 53036032.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 64, 40, 40}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52838400.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 128, 80, 80}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52633600.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 128, 20, 20}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52633600.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 256, 10, 10}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52531200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.026 x 2 = 0.053 */ {{1, 1}, {{1, 16, 112, 112}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26492928.},
/* GFLOPS 0.013 x 4 = 0.053 */ {{1, 1}, {{1, 128, 20, 20}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13158400.},
/* GFLOPS 0.026 x 2 = 0.052 */ {{1, 1}, {{1, 1024, 10, 10}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 26227200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.013 x 4 = 0.052 */ {{1, 1}, {{1, 16, 64, 64}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 12976128.},
/* GFLOPS 0.051 x 1 = 0.051 */ {{1, 1}, {{1, 256, 56, 56}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 51480576.},
/* GFLOPS 0.051 x 1 = 0.051 */ {{1, 1}, {{1, 512, 28, 28}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 51430400.},
/* GFLOPS 0.051 x 1 = 0.051 */ {{1, 1}, {{1, 1024, 14, 14}}, 512, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 51405312.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.026 x 2 = 0.051 */ {{1, 1}, {{1, 960, 7, 7}}, 272, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 25603088.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.047 x 1 = 0.047 */ {{1, 1}, {{1, 144, 64, 64}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 47349760.},
/* GFLOPS 0.047 x 1 = 0.047 */ {{1, 1}, {{1, 512, 38, 50}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 46740000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.023 x 2 = 0.046 */ {{1, 1}, {{1, 56, 46, 46}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 22954368.},
/* GFLOPS 0.045 x 1 = 0.045 */ {{1, 1}, {{1, 224, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 45058048.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.044 x 1 = 0.044 */ {{1, 1}, {{1, 512, 13, 13}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 44172375.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.007 x 6 = 0.044 */ {{1, 1}, {{1, 672, 7, 7}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7381360.},
/* GFLOPS 0.007 x 6 = 0.043 */ {{1, 1}, {{1, 576, 8, 8}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7084032.},
/* GFLOPS 0.020 x 2 = 0.041 */ {{1, 1}, {{1, 120, 46, 46}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 20398240.},
/* GFLOPS 0.010 x 4 = 0.040 */ {{1, 1}, {{1, 16, 56, 56}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9934848.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.039 x 1 = 0.039 */ {{1, 1}, {{1, 240, 32, 32}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 39403520.},
/* GFLOPS 0.039 x 1 = 0.039 */ {{1, 1}, {{1, 144, 75, 75}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 39015000.},
/* GFLOPS 0.039 x 1 = 0.039 */ {{1, 1}, {{1, 192, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 38635520.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.020 x 2 = 0.039 */ {{1, 1}, {{1, 32, 112, 112}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 19568640.},
/* GFLOPS 0.010 x 4 = 0.039 */ {{1, 1}, {{1, 336, 16, 16}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9648128.},
/* GFLOPS 0.019 x 2 = 0.038 */ {{1, 1}, {{1, 32, 48, 48}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 19169280.},
/* GFLOPS 0.005 x 8 = 0.038 */ {{1, 1}, {{1, 256, 6, 6}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4727808.},
/* GFLOPS 0.036 x 1 = 0.036 */ {{1, 1}, {{1, 480, 14, 14}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 36164352.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.018 x 2 = 0.036 */ {{1, 1}, {{1, 40, 46, 46}}, 104, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 17825184.},
/* GFLOPS 0.009 x 4 = 0.036 */ {{1, 1}, {{1, 8, 256, 256}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8912896.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.035 x 1 = 0.035 */ {{1, 1}, {{1, 512, 46, 46}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 34702400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.018 x 2 = 0.035 */ {{1, 1}, {{1, 104, 46, 46}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 17689760.},
/* GFLOPS 0.034 x 1 = 0.034 */ {{1, 1}, {{1, 128, 32, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 33685504.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.017 x 2 = 0.034 */ {{1, 1}, {{1, 192, 28, 28}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16903040.},
/* GFLOPS 0.033 x 1 = 0.033 */ {{1, 1}, {{1, 528, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 33147520.},
/* GFLOPS 0.033 x 1 = 0.033 */ {{1, 1}, {{1, 1024, 10, 10}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 32784000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.016 x 2 = 0.033 */ {{1, 1}, {{1, 40, 92, 92}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16454016.},
/* GFLOPS 0.005 x 6 = 0.033 */ {{1, 1}, {{1, 48, 14, 14}}, 288, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5475456.},
/* GFLOPS 0.032 x 1 = 0.032 */ {{1, 1}, {{1, 160, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 32212992.},
/* GFLOPS 0.032 x 1 = 0.032 */ {{1, 1}, {{1, 512, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 32144000.},
/* GFLOPS 0.032 x 1 = 0.032 */ {{1, 1}, {{1, 508, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 31893120.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.011 x 3 = 0.032 */ {{1, 1}, {{1, 320, 16, 16}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 10502144.},
/* GFLOPS 0.031 x 1 = 0.031 */ {{1, 1}, {{1, 832, 7, 7}}, 384, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 31328640.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.015 x 2 = 0.030 */ {{1, 1}, {{1, 128, 46, 46}}, 28, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 15226736.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.015 x 2 = 0.030 */ {{1, 1}, {{1, 336, 14, 14}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 14773696.},
/* GFLOPS 0.005 x 6 = 0.030 */ {{1, 1}, {{1, 40, 16, 16}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4976640.},
/* GFLOPS 0.029 x 1 = 0.029 */ {{1, 1}, {{1, 512, 14, 14}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 28929600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.015 x 2 = 0.029 */ {{1, 1}, {{1, 112, 32, 32}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 14745600.},
/* GFLOPS 0.007 x 4 = 0.029 */ {{1, 1}, {{1, 24, 32, 32}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7225344.},
/* GFLOPS 0.014 x 2 = 0.028 */ {{1, 1}, {{1, 576, 8, 8}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 14168064.},
/* GFLOPS 0.027 x 1 = 0.027 */ {{1, 1}, {{1, 384, 19, 19}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 26650464.},
/* GFLOPS 0.027 x 1 = 0.027 */ {{1, 1}, {{1, 576, 19, 19}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 26638912.},
/* GFLOPS 0.026 x 1 = 0.026 */ {{1, 1}, {{1, 96, 75, 75}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 26055000.},
/* GFLOPS 0.026 x 1 = 0.026 */ {{1, 1}, {{1, 1024, 10, 10}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 25817400.},
/* GFLOPS 0.013 x 2 = 0.026 */ {{1, 1}, {{1, 512, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 12857600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.009 x 3 = 0.026 */ {{1, 1}, {{1, 128, 46, 46}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8700992.},
/* GFLOPS 0.013 x 2 = 0.025 */ {{1, 1}, {{1, 96, 64, 64}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 12648448.},
/* GFLOPS 0.024 x 1 = 0.024 */ {{1, 1}, {{1, 480, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 24109568.},
/* GFLOPS 0.024 x 1 = 0.024 */ {{1, 1}, {{1, 128, 38, 38}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 23750912.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 32, 150, 150}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 23400000.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 512, 19, 19}}, 63, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 23311575.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 448, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 22503936.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 512, 14, 14}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 22500800.},
/* GFLOPS 0.022 x 1 = 0.022 */ {{1, 1}, {{1, 508, 14, 14}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 22325184.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.006 x 4 = 0.022 */ {{1, 1}, {{1, 24, 28, 28}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5531904.},
/* GFLOPS 0.005 x 4 = 0.022 */ {{1, 1}, {{1, 288, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5428416.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.021 x 1 = 0.021 */ {{1, 1}, {{1, 40, 64, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 21233664.},
/* GFLOPS 0.021 x 1 = 0.021 */ {{1, 1}, {{1, 416, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 20898304.},
/* GFLOPS 0.021 x 1 = 0.021 */ {{1, 1}, {{1, 832, 7, 7}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 20885760.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.010 x 2 = 0.021 */ {{1, 1}, {{1, 32, 64, 64}}, 39, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 10383360.},
/* GFLOPS 0.010 x 2 = 0.020 */ {{1, 1}, {{1, 24, 112, 112}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9834496.},
/* GFLOPS 0.005 x 4 = 0.020 */ {{1, 1}, {{1, 240, 16, 16}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4925440.},
/* GFLOPS 0.019 x 1 = 0.019 */ {{1, 1}, {{1, 384, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 19292672.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.019 x 1 = 0.019 */ {{1, 1}, {{1, 64, 64, 64}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 19021824.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.010 x 2 = 0.019 */ {{1, 1}, {{1, 96, 56, 56}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9683968.},
/* GFLOPS 0.010 x 2 = 0.019 */ {{1, 1}, {{1, 32, 48, 48}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9584640.},
/* GFLOPS 0.010 x 2 = 0.019 */ {{1, 1}, {{1, 64, 48, 48}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 9510912.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 576, 10, 10}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 18448000.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 480, 14, 14}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 18082176.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 192, 38, 38}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 17790080.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 352, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 17687040.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.009 x 2 = 0.018 */ {{1, 1}, {{1, 8, 128, 128}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8912896.},
/* GFLOPS 0.008 x 2 = 0.017 */ {{1, 1}, {{1, 64, 80, 80}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8256000.},
/* GFLOPS 0.016 x 1 = 0.016 */ {{1, 1}, {{1, 832, 7, 7}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 15664320.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.008 x 2 = 0.016 */ {{1, 1}, {{1, 128, 20, 20}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8224000.},
/* GFLOPS 0.008 x 2 = 0.016 */ {{1, 1}, {{1, 256, 12, 12}}, 108, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7978176.},
/* GFLOPS 0.014 x 1 = 0.014 */ {{1, 1}, {{1, 288, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 14475776.},
/* GFLOPS 0.014 x 1 = 0.014 */ {{1, 1}, {{1, 512, 5, 5}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 13991250.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.007 x 2 = 0.014 */ {{1, 1}, {{1, 288, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7237888.},
/* GFLOPS 0.007 x 2 = 0.014 */ {{1, 1}, {{1, 144, 32, 32}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7102464.},
/* GFLOPS 0.007 x 2 = 0.014 */ {{1, 1}, {{1, 240, 16, 16}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6895616.},
/* GFLOPS 0.013 x 1 = 0.013 */ {{1, 1}, {{1, 144, 38, 38}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 13354112.},
/* GFLOPS 0.013 x 1 = 0.013 */ {{1, 1}, {{1, 832, 7, 7}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13053600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.013 x 1 = 0.013 */ {{1, 1}, {{1, 508, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 12757248.},
/* GFLOPS 0.007 x 2 = 0.013 */ {{1, 1}, {{1, 16, 56, 56}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6623232.},
/* GFLOPS 0.007 x 2 = 0.013 */ {{1, 1}, {{1, 128, 80, 80}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6579200.},
/* GFLOPS 0.007 x 2 = 0.013 */ {{1, 1}, {{1, 32, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6522880.},
/* GFLOPS 0.006 x 2 = 0.013 */ {{1, 1}, {{1, 64, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6472704.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.006 x 2 = 0.013 */ {{1, 1}, {{1, 24, 128, 128}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6422528.},
/* GFLOPS 0.002 x 6 = 0.013 */ {{1, 1}, {{1, 8, 128, 128}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2228224.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 992, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 12449920.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 480, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 12054784.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 960, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 12048512.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 32, 75, 75}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 12014080.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 320, 12, 12}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 11814912.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 640, 6, 6}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 11805696.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 928, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 11647104.},
/* GFLOPS 0.011 x 1 = 0.011 */ {{1, 1}, {{1, 896, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 11245696.},
/* GFLOPS 0.011 x 1 = 0.011 */ {{1, 1}, {{1, 864, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 10844288.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.005 x 2 = 0.011 */ {{1, 1}, {{1, 144, 28, 28}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5437824.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{1, 1}, {{1, 128, 24, 24}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5329152.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 832, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 10442880.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 800, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 10041472.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 384, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9646336.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 768, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 9640064.},
/* GFLOPS 0.009 x 1 = 0.009 */ {{1, 1}, {{1, 736, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 9238656.},
/* GFLOPS 0.009 x 1 = 0.009 */ {{1, 1}, {{1, 704, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 8837248.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.005 x 2 = 0.009 */ {{1, 1}, {{1, 96, 32, 32}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4743168.},
/* GFLOPS 0.005 x 2 = 0.009 */ {{1, 1}, {{1, 4, 128, 256}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 4718592.},
/* GFLOPS 0.004 x 2 = 0.009 */ {{1, 1}, {{1, 16, 64, 64}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4325376.},
/* GFLOPS 0.004 x 2 = 0.009 */ {{1, 1}, {{1, 32, 64, 64}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4259840.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{1, 1}, {{1, 672, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 8435840.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{1, 1}, {{1, 128, 32, 64}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 8421376.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{1, 1}, {{1, 608, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 7633024.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.004 x 2 = 0.008 */ {{1, 1}, {{1, 384, 7, 7}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4220272.},
/* GFLOPS 0.004 x 2 = 0.008 */ {{1, 1}, {{1, 336, 8, 8}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4134912.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 640, 6, 6}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7378560.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 384, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7234752.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 576, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 7231616.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 256, 12, 12}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7091712.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 544, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 6830208.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 528, 14, 14}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6629504.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 256, 5, 5}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 6566400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.004 x 2 = 0.007 */ {{1, 1}, {{1, 48, 14, 14}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3650304.},
/* GFLOPS 0.003 x 2 = 0.007 */ {{1, 1}, {{1, 64, 80, 80}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3302400.},
/* GFLOPS 0.006 x 1 = 0.006 */ {{1, 1}, {{1, 64, 56, 56}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6472704.},
/* GFLOPS 0.006 x 1 = 0.006 */ {{1, 1}, {{1, 512, 14, 14}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6428800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.003 x 2 = 0.006 */ {{1, 1}, {{1, 144, 16, 16}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2959360.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 192, 12, 12}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5322240.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 1024, 10, 10}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4917600.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 256, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4826304.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 508, 14, 14}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 4783968.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 64, 32, 32}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 4755456.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 1024, 3, 3}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4720896.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.003 x 2 = 0.005 */ {{1, 1}, {{1, 144, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2718912.},
/* GFLOPS 0.002 x 2 = 0.005 */ {{1, 1}, {{1, 576, 8, 8}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2361344.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 512, 19, 19}}, 12, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4440300.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 640, 6, 6}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4427136.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 16, 128, 256}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 4325376.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 64, 64, 128}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 4227072.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 832, 7, 7}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3916080.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 192, 12, 12}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3548160.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.002 x 2 = 0.004 */ {{1, 1}, {{1, 240, 48, 48}}, 2, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2216448.},
/* GFLOPS 0.002 x 2 = 0.004 */ {{1, 1}, {{1, 32, 64, 64}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2129920.},
/* GFLOPS 0.002 x 2 = 0.004 */ {{1, 1}, {{1, 64, 40, 40}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2064000.},
/* GFLOPS 0.001 x 6 = 0.004 */ {{1, 1}, {{1, 32, 24, 24}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 599040.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 736, 3, 3}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3393792.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 512, 5, 5}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3280000.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 512, 5, 5}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3228750.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 480, 14, 14}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3013696.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 320, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2953728.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 640, 6, 6}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2951424.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 832, 7, 7}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2610720.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.002 x 2 = 0.003 */ {{1, 1}, {{1, 128, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1644800.},
/* GFLOPS 0.002 x 2 = 0.003 */ {{1, 1}, {{1, 128, 40, 40}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1644800.},
/* GFLOPS 0.002 x 2 = 0.003 */ {{1, 1}, {{1, 24, 32, 32}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1605632.},
/* GFLOPS 0.001 x 4 = 0.003 */ {{1, 1}, {{1, 64, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 825600.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 256, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2363904.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 528, 4, 4}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2164736.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 508, 4, 4}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2082816.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 1024, 1, 1}}, 1000, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2049000.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 64, 4, 4}}, 810, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 1671840.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 32, 80, 80}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1664000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.001 x 2 = 0.002 */ {{1, 1}, {{1, 16, 4, 8400}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 1108800.},
/* GFLOPS 0.001 x 2 = 0.002 */ {{1, 1}, {{1, 56, 16, 16}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 925696.},
/* GFLOPS 0.001 x 2 = 0.002 */ {{1, 1}, {{1, 64, 40, 40}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 825600.},
/* GFLOPS 0.001 x 4 = 0.002 */ {{1, 1}, {{1, 64, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 594432.},
/* GFLOPS 0.000 x 8 = 0.002 */ {{1, 1}, {{1, 192, 2, 2}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 295680.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 640, 6, 6}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1475712.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 256, 2, 2}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1120392.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 192, 12, 12}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 887040.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 640, 2, 2}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 655872.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 512, 5, 5}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 615000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.001 x 2 = 0.001 */ {{1, 1}, {{1, 256, 3, 3}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 590976.},
/* GFLOPS 0.001 x 2 = 0.001 */ {{1, 1}, {{1, 64, 20, 20}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 516000.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 256, 12, 12}}, 6, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 443232.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 32, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 416000.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 40, 40}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 411200.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 20, 20}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 411200.},
/* GFLOPS 0.000 x 4 = 0.001 */ {{1, 1}, {{1, 64, 12, 12}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 297216.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 6, 6}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 296064.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 24, 24}}, 2, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 296064.},
/* GFLOPS 0.000 x 4 = 0.001 */ {{1, 1}, {{1, 64, 40, 40}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 206400.},
/* GFLOPS 0.000 x 9 = 0.001 */ {{1, 1}, {{1, 64, 4, 4}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 132096.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 192, 5, 5}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 308000.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 2, 2}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 263168.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 256, 2, 2}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 258552.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 64, 20, 20}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 206400.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 1024, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 196704.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 3, 3}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 148032.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 128, 6, 6}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 148032.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 736, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 141408.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 1, 1}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 140322.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 256, 2, 2}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 131328.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 48, 1, 1}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 111744.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 1152, 1, 1}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 110640.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 128, 20, 20}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 102800.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 64, 4, 4}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 74304.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 64, 20, 20}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 51600.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 256, 2, 2}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 49248.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 28, 1, 1}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 38304.},
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 672, 1, 1}}, 28, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 37660.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 1, 1}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 32382.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 20, 1, 1}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 19680.},
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 480, 1, 1}}, 20, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 19220.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 64, 1, 1}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 16512.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6168.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 10, 1, 1}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5040.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 240, 1, 1}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 4810.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 24, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4704.},
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 96, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4632.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 4, 16, 16}}, 2, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4608.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 4, 16, 16}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2304.},
2021-09-10 20:42:28 +08:00
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 6, 1, 1}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1872.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 144, 1, 1}}, 6, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1734.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 4, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 864.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 96, 1, 1}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 772.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 8, 1, 1}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 544.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 32, 1, 1}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 520.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 6, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 312.},
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 24, 1, 1}}, 6, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 294.},
};
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
static const ConvParam_t testConvolution_3x3S1D1_Configs[] = {
/* GFLOPS 1.596 x 14 = 22.338 */ {{3, 3}, {{1, 128, 52, 52}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595576320.},
/* GFLOPS 1.595 x 12 = 19.141 */ {{3, 3}, {{1, 512, 13, 13}}, 1024, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595057152.},
/* GFLOPS 6.814 x 2 = 13.629 */ {{3, 3}, {{1, 512, 38, 38}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6814386176.},
/* GFLOPS 6.637 x 2 = 13.274 */ {{3, 3}, {{1, 256, 75, 75}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6636960000.},
/* GFLOPS 10.701 x 1 = 10.701 */ {{3, 3}, {{1, 512, 38, 38}}, 804, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 10700715792.},
/* GFLOPS 10.087 x 1 = 10.087 */ {{3, 3}, {{1, 576, 38, 50}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 10086963200.},
/* GFLOPS 9.993 x 1 = 9.993 */ {{3, 3}, {{1, 64, 368, 368}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9993207808.},
/* GFLOPS 9.989 x 1 = 9.989 */ {{3, 3}, {{1, 128, 184, 184}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9988874240.},
/* GFLOPS 4.247 x 2 = 8.494 */ {{3, 3}, {{1, 480, 32, 32}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 4247224320.},
/* GFLOPS 8.025 x 1 = 8.025 */ {{3, 3}, {{1, 1024, 19, 19}}, 1206, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 8025101478.},
/* GFLOPS 6.641 x 1 = 6.641 */ {{3, 3}, {{1, 64, 300, 300}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6641280000.},
/* GFLOPS 6.641 x 1 = 6.641 */ {{3, 3}, {{1, 64, 150, 200}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 6641280000.},
/* GFLOPS 6.638 x 1 = 6.638 */ {{3, 3}, {{1, 128, 150, 150}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6638400000.},
/* GFLOPS 6.118 x 1 = 6.118 */ {{3, 3}, {{1, 144, 128, 128}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 6117654528.},
/* GFLOPS 6.116 x 1 = 6.116 */ {{3, 3}, {{1, 1152, 16, 16}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 6115590144.},
/* GFLOPS 4.997 x 1 = 4.997 */ {{3, 3}, {{1, 64, 184, 184}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 4996603904.},
/* GFLOPS 4.993 x 1 = 4.993 */ {{3, 3}, {{1, 512, 46, 46}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 4992812032.},
/* GFLOPS 3.408 x 1 = 3.408 */ {{3, 3}, {{1, 256, 38, 38}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3407562752.},
/* GFLOPS 0.302 x 11 = 3.325 */ {{3, 3}, {{1, 64, 64, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 302252032.},
/* GFLOPS 3.321 x 1 = 3.321 */ {{3, 3}, {{1, 64, 150, 150}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3320640000.},
/* GFLOPS 0.830 x 4 = 3.321 */ {{3, 3}, {{1, 64, 75, 100}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 830160000.},
/* GFLOPS 3.319 x 1 = 3.319 */ {{3, 3}, {{1, 128, 75, 75}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3319200000.},
/* GFLOPS 1.598 x 2 = 3.195 */ {{3, 3}, {{1, 32, 208, 208}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1597652992.},
/* GFLOPS 1.596 x 2 = 3.193 */ {{3, 3}, {{1, 64, 104, 104}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1596268544.},
/* GFLOPS 1.405 x 2 = 2.810 */ {{3, 3}, {{1, 96, 184, 184}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1404888576.},
/* GFLOPS 0.798 x 3 = 2.394 */ {{3, 3}, {{1, 64, 104, 104}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 798134272.},
/* GFLOPS 2.255 x 1 = 2.255 */ {{3, 3}, {{1, 128, 80, 100}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2255285760.},
/* GFLOPS 2.153 x 1 = 2.153 */ {{3, 3}, {{1, 128, 78, 98}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2152611840.},
/* GFLOPS 2.052 x 1 = 2.052 */ {{3, 3}, {{1, 128, 76, 96}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2052298240.},
/* GFLOPS 1.022 x 2 = 2.044 */ {{3, 3}, {{1, 576, 19, 19}}, 273, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1021896057.},
/* GFLOPS 1.954 x 1 = 1.954 */ {{3, 3}, {{1, 128, 74, 94}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1954344960.},
/* GFLOPS 1.888 x 1 = 1.888 */ {{3, 3}, {{1, 1024, 10, 10}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1887539200.},
/* GFLOPS 1.859 x 1 = 1.859 */ {{3, 3}, {{1, 128, 72, 92}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1858752000.},
/* GFLOPS 1.766 x 1 = 1.766 */ {{3, 3}, {{1, 128, 70, 90}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1765519360.},
/* GFLOPS 1.704 x 1 = 1.704 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1703781376.},
/* GFLOPS 1.675 x 1 = 1.675 */ {{3, 3}, {{1, 128, 68, 88}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1674647040.},
/* GFLOPS 1.660 x 1 = 1.660 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1659600000.},
/* GFLOPS 1.586 x 1 = 1.586 */ {{3, 3}, {{1, 128, 66, 86}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1586135040.},
/* GFLOPS 1.500 x 1 = 1.500 */ {{3, 3}, {{1, 128, 64, 84}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1499983360.},
/* GFLOPS 0.711 x 2 = 1.422 */ {{3, 3}, {{1, 12, 320, 320}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 711065600.},
/* GFLOPS 1.416 x 1 = 1.416 */ {{3, 3}, {{1, 128, 62, 82}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1416192000.},
/* GFLOPS 0.701 x 2 = 1.401 */ {{3, 3}, {{1, 128, 38, 50}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 700720000.},
/* GFLOPS 0.231 x 6 = 1.388 */ {{3, 3}, {{1, 128, 56, 56}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 231311360.},
/* GFLOPS 0.231 x 6 = 1.388 */ {{3, 3}, {{1, 256, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 231261184.},
/* GFLOPS 0.420 x 3 = 1.261 */ {{3, 3}, {{1, 96, 38, 50}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 420492800.},
/* GFLOPS 1.258 x 1 = 1.258 */ {{3, 3}, {{1, 1280, 10, 10}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1258038600.},
/* GFLOPS 1.248 x 1 = 1.248 */ {{3, 3}, {{1, 256, 46, 46}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1248338432.},
/* GFLOPS 1.245 x 1 = 1.245 */ {{3, 3}, {{1, 64, 75, 75}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1245240000.},
/* GFLOPS 1.210 x 1 = 1.210 */ {{3, 3}, {{1, 32, 256, 256}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1210056704.},
/* GFLOPS 1.196 x 1 = 1.196 */ {{3, 3}, {{1, 384, 26, 26}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1196336128.},
/* GFLOPS 0.590 x 2 = 1.181 */ {{3, 3}, {{1, 64, 80, 80}}, 80, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 590336000.},
/* GFLOPS 0.561 x 2 = 1.121 */ {{3, 3}, {{1, 128, 38, 50}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 560576000.},
/* GFLOPS 1.112 x 1 = 1.112 */ {{3, 3}, {{1, 512, 10, 10}}, 1206, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1111570200.},
/* GFLOPS 0.076 x 14 = 1.058 */ {{3, 3}, {{1, 64, 32, 32}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 75563008.},
/* GFLOPS 1.051 x 1 = 1.051 */ {{3, 3}, {{1, 160, 38, 50}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1050988800.},
/* GFLOPS 1.006 x 1 = 1.006 */ {{3, 3}, {{1, 1024, 10, 10}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1006441800.},
/* GFLOPS 0.473 x 2 = 0.945 */ {{3, 3}, {{1, 32, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 472678400.},
/* GFLOPS 0.472 x 2 = 0.944 */ {{3, 3}, {{1, 512, 4, 25}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 471910400.},
/* GFLOPS 0.841 x 1 = 0.841 */ {{3, 3}, {{1, 128, 38, 50}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 840864000.},
/* GFLOPS 0.415 x 2 = 0.831 */ {{3, 3}, {{1, 32, 150, 150}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 415440000.},
/* GFLOPS 0.118 x 6 = 0.710 */ {{3, 3}, {{1, 16, 160, 160}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118374400.},
/* GFLOPS 0.351 x 2 = 0.702 */ {{3, 3}, {{1, 96, 92, 92}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 351222144.},
/* GFLOPS 0.694 x 1 = 0.694 */ {{3, 3}, {{1, 64, 56, 56}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 694235136.},
/* GFLOPS 0.231 x 3 = 0.694 */ {{3, 3}, {{1, 512, 7, 7}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 231236096.},
/* GFLOPS 0.160 x 4 = 0.639 */ {{3, 3}, {{1, 64, 38, 38}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 159833472.},
/* GFLOPS 0.305 x 2 = 0.609 */ {{3, 3}, {{1, 3, 416, 416}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 304578560.},
/* GFLOPS 0.295 x 2 = 0.590 */ {{3, 3}, {{1, 128, 40, 40}}, 80, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 295040000.},
/* GFLOPS 0.553 x 1 = 0.553 */ {{3, 3}, {{1, 64, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 553440000.},
/* GFLOPS 0.477 x 1 = 0.477 */ {{3, 3}, {{1, 3, 368, 368}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 476692480.},
/* GFLOPS 0.236 x 2 = 0.472 */ {{3, 3}, {{1, 128, 40, 40}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 236032000.},
/* GFLOPS 0.236 x 2 = 0.472 */ {{3, 3}, {{1, 256, 8, 25}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 235980800.},
/* GFLOPS 0.236 x 2 = 0.472 */ {{3, 3}, {{1, 256, 4, 25}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 235980800.},
/* GFLOPS 0.449 x 1 = 0.449 */ {{3, 3}, {{1, 384, 13, 13}}, 384, 2, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 448626048.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 128, 38, 38}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 426037760.},
/* GFLOPS 0.399 x 1 = 0.399 */ {{3, 3}, {{1, 256, 13, 13}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 398807552.},
/* GFLOPS 0.200 x 2 = 0.399 */ {{3, 3}, {{1, 32, 104, 104}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 199706624.},
/* GFLOPS 0.319 x 1 = 0.319 */ {{3, 3}, {{1, 192, 19, 19}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 319482112.},
/* GFLOPS 0.317 x 1 = 0.317 */ {{3, 3}, {{1, 3, 300, 300}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 316800000.},
/* GFLOPS 0.299 x 1 = 0.299 */ {{3, 3}, {{1, 256, 13, 13}}, 384, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 299105664.},
/* GFLOPS 0.299 x 1 = 0.299 */ {{3, 3}, {{1, 384, 13, 13}}, 256, 2, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 299084032.},
/* GFLOPS 0.147 x 2 = 0.295 */ {{3, 3}, {{1, 256, 20, 20}}, 80, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 147488000.},
/* GFLOPS 0.133 x 2 = 0.266 */ {{3, 3}, {{1, 128, 19, 19}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 133136800.},
/* GFLOPS 0.038 x 7 = 0.265 */ {{3, 3}, {{1, 16, 64, 128}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 37879808.},
/* GFLOPS 0.011 x 24 = 0.256 */ {{3, 3}, {{1, 16, 48, 48}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 10653696.},
/* GFLOPS 0.011 x 24 = 0.255 */ {{3, 3}, {{1, 32, 24, 24}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 10635264.},
/* GFLOPS 0.126 x 2 = 0.252 */ {{3, 3}, {{1, 512, 5, 5}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 125812050.},
/* GFLOPS 0.118 x 2 = 0.236 */ {{3, 3}, {{1, 64, 16, 50}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118067200.},
/* GFLOPS 0.118 x 2 = 0.236 */ {{3, 3}, {{1, 128, 8, 25}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118016000.},
/* GFLOPS 0.118 x 2 = 0.236 */ {{3, 3}, {{1, 256, 20, 20}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 117990400.},
/* GFLOPS 0.111 x 2 = 0.221 */ {{3, 3}, {{1, 192, 10, 10}}, 320, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 110624000.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 256, 19, 19}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 212972672.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 512, 38, 38}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 212949568.},
/* GFLOPS 0.210 x 1 = 0.210 */ {{3, 3}, {{1, 64, 38, 50}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 210307200.},
/* GFLOPS 0.104 x 2 = 0.208 */ {{3, 3}, {{1, 32, 75, 75}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 103860000.},
/* GFLOPS 0.200 x 1 = 0.200 */ {{3, 3}, {{1, 160, 19, 19}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 199687872.},
/* GFLOPS 0.038 x 5 = 0.189 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.090 x 2 = 0.181 */ {{3, 3}, {{1, 224, 10, 10}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 90339200.},
/* GFLOPS 0.088 x 2 = 0.176 */ {{3, 3}, {{1, 96, 46, 46}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 87805536.},
/* GFLOPS 0.160 x 1 = 0.160 */ {{3, 3}, {{1, 128, 19, 19}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 159764160.},
/* GFLOPS 0.146 x 1 = 0.146 */ {{3, 3}, {{1, 144, 14, 14}}, 288, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 146369664.},
/* GFLOPS 0.139 x 1 = 0.139 */ {{3, 3}, {{1, 256, 5, 5}}, 1206, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 138961350.},
/* GFLOPS 0.128 x 1 = 0.128 */ {{3, 3}, {{1, 64, 24, 24}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 127512576.},
/* GFLOPS 0.058 x 2 = 0.116 */ {{3, 3}, {{1, 16, 56, 56}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 58003456.},
/* GFLOPS 0.058 x 2 = 0.116 */ {{3, 3}, {{1, 32, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 57903104.},
/* GFLOPS 0.058 x 2 = 0.116 */ {{3, 3}, {{1, 64, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 57852928.},
/* GFLOPS 0.045 x 2 = 0.090 */ {{3, 3}, {{1, 576, 19, 19}}, 12, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 44918508.},
/* GFLOPS 0.089 x 1 = 0.089 */ {{3, 3}, {{1, 112, 14, 14}}, 224, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 88554368.},
/* GFLOPS 0.043 x 2 = 0.085 */ {{3, 3}, {{1, 32, 48, 48}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 42541056.},
/* GFLOPS 0.011 x 8 = 0.085 */ {{3, 3}, {{1, 128, 6, 6}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 10621440.},
/* GFLOPS 0.077 x 1 = 0.077 */ {{3, 3}, {{1, 192, 10, 10}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 77436800.},
/* GFLOPS 0.070 x 1 = 0.070 */ {{3, 3}, {{1, 96, 14, 14}}, 208, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 70487872.},
/* GFLOPS 0.069 x 1 = 0.069 */ {{3, 3}, {{1, 96, 14, 14}}, 204, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 69132336.},
/* GFLOPS 0.065 x 1 = 0.065 */ {{3, 3}, {{1, 192, 7, 7}}, 384, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 65046912.},
/* GFLOPS 0.065 x 1 = 0.065 */ {{3, 3}, {{1, 160, 10, 10}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 64534400.},
/* GFLOPS 0.033 x 2 = 0.065 */ {{3, 3}, {{1, 48, 14, 14}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 32551680.},
/* GFLOPS 0.032 x 2 = 0.064 */ {{3, 3}, {{1, 96, 12, 12}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 31868928.},
/* GFLOPS 0.004 x 16 = 0.058 */ {{3, 3}, {{1, 128, 7, 7}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 3614240.},
/* GFLOPS 0.055 x 1 = 0.055 */ {{3, 3}, {{1, 1280, 10, 10}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 55298400.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{3, 3}, {{1, 128, 38, 38}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 53254720.},
/* GFLOPS 0.045 x 1 = 0.045 */ {{3, 3}, {{1, 160, 7, 7}}, 320, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 45174080.},
/* GFLOPS 0.044 x 1 = 0.044 */ {{3, 3}, {{1, 1024, 10, 10}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 44239200.},
/* GFLOPS 0.022 x 2 = 0.044 */ {{3, 3}, {{1, 3, 112, 112}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 22077440.},
/* GFLOPS 0.022 x 2 = 0.044 */ {{3, 3}, {{1, 96, 23, 23}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 21951384.},
/* GFLOPS 0.007 x 6 = 0.043 */ {{3, 3}, {{1, 48, 16, 16}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 7086080.},
/* GFLOPS 0.040 x 1 = 0.040 */ {{3, 3}, {{1, 64, 19, 19}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 39958368.},
/* GFLOPS 0.027 x 1 = 0.027 */ {{3, 3}, {{1, 128, 38, 38}}, 8, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 26627360.},
/* GFLOPS 0.010 x 2 = 0.020 */ {{3, 3}, {{1, 256, 2, 2}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 10066056.},
/* GFLOPS 0.010 x 2 = 0.019 */ {{3, 3}, {{1, 8, 256, 256}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9502720.},
/* GFLOPS 0.002 x 6 = 0.014 */ {{3, 3}, {{1, 32, 16, 16}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2363392.},
/* GFLOPS 0.001 x 11 = 0.013 */ {{3, 3}, {{1, 64, 4, 4}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1180672.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{3, 3}, {{1, 96, 6, 6}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 11950848.},
/* GFLOPS 0.006 x 2 = 0.012 */ {{3, 3}, {{1, 96, 3, 3}}, 384, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 5975424.},
/* GFLOPS 0.006 x 2 = 0.011 */ {{3, 3}, {{1, 512, 5, 5}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5530200.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{3, 3}, {{1, 4, 128, 256}}, 4, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9568256.},
/* GFLOPS 0.006 x 1 = 0.006 */ {{3, 3}, {{1, 256, 10, 10}}, 12, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 5530800.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{3, 3}, {{1, 256, 1, 1}}, 804, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3705636.},
/* GFLOPS 0.001 x 6 = 0.004 */ {{3, 3}, {{1, 16, 16, 16}}, 8, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 591872.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 128, 1, 1}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1258530.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{3, 3}, {{1, 128, 5, 5}}, 12, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 691500.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{3, 3}, {{1, 128, 3, 3}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 590080.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{3, 3}, {{1, 256, 2, 2}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 442464.},
/* GFLOPS 0.000 x 6 = 0.001 */ {{3, 3}, {{1, 8, 16, 16}}, 4, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 148480.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 64, 3, 3}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 147584.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 256, 1, 1}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 73744.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{3, 3}, {{1, 128, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 55320.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 128, 1, 1}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 36880.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 128, 1, 1}}, 8, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 18440.},
};
static const ConvParam_t testConvolution_Depthwise_Configs[] = {
/* GFLOPS 6.525 x 14 = 91.357 */ {{5, 5}, {{1, 1632, 7, 7}}, 1632, 1632, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 6525468768.},
/* GFLOPS 6.094 x 4 = 24.377 */ {{5, 5}, {{1, 480, 23, 23}}, 480, 480, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 6094333920.},
/* GFLOPS 0.925 x 10 = 9.249 */ {{3, 3}, {{1, 512, 14, 14}}, 512, 512, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 924944384.},
/* GFLOPS 4.301 x 2 = 8.601 */ {{3, 3}, {{1, 336, 46, 46}}, 336, 336, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 4300693824.},
/* GFLOPS 1.734 x 4 = 6.936 */ {{5, 5}, {{1, 64, 92, 92}}, 64, 64, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1733968896.},
/* GFLOPS 1.106 x 6 = 6.638 */ {{5, 5}, {{1, 672, 7, 7}}, 672, 672, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1106413728.},
/* GFLOPS 1.062 x 6 = 6.370 */ {{5, 5}, {{1, 576, 8, 8}}, 576, 576, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1061720064.},
/* GFLOPS 2.986 x 2 = 5.973 */ {{5, 5}, {{1, 336, 46, 46}}, 336, 336, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 2986276944.},
/* GFLOPS 1.445 x 4 = 5.781 */ {{5, 5}, {{1, 336, 16, 16}}, 336, 336, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1445154816.},
/* GFLOPS 0.472 x 10 = 4.719 */ {{5, 5}, {{1, 128, 24, 24}}, 128, 128, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 471932928.},
/* GFLOPS 2.194 x 2 = 4.389 */ {{3, 3}, {{1, 240, 46, 46}}, 240, 240, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2194376640.},
/* GFLOPS 1.889 x 2 = 3.778 */ {{3, 3}, {{1, 64, 160, 160}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1889075200.},
/* GFLOPS 1.659 x 2 = 3.318 */ {{5, 5}, {{1, 960, 14, 14}}, 960, 960, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1658914560.},
/* GFLOPS 0.472 x 6 = 2.834 */ {{3, 3}, {{1, 64, 80, 80}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 472268800.},
/* GFLOPS 0.472 x 6 = 2.832 */ {{5, 5}, {{1, 64, 48, 48}}, 64, 64, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 472006656.},
/* GFLOPS 1.344 x 2 = 2.688 */ {{5, 5}, {{1, 192, 56, 56}}, 192, 192, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1343832768.},
/* GFLOPS 0.382 x 6 = 2.293 */ {{3, 3}, {{1, 576, 8, 8}}, 576, 576, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 382242816.},
/* GFLOPS 1.130 x 2 = 2.259 */ {{3, 3}, {{1, 144, 112, 112}}, 144, 144, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 1129510800.},
/* GFLOPS 1.062 x 2 = 2.124 */ {{5, 5}, {{1, 144, 32, 32}}, 144, 144, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1061830656.},
/* GFLOPS 0.976 x 2 = 1.953 */ {{3, 3}, {{1, 40, 184, 184}}, 40, 40, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 976407040.},
/* GFLOPS 0.473 x 4 = 1.891 */ {{3, 3}, {{1, 32, 160, 160}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 472678400.},
/* GFLOPS 0.925 x 2 = 1.850 */ {{3, 3}, {{1, 128, 56, 56}}, 128, 128, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 925245440.},
/* GFLOPS 0.925 x 2 = 1.850 */ {{3, 3}, {{1, 256, 28, 28}}, 256, 256, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 925044736.},
/* GFLOPS 0.925 x 2 = 1.850 */ {{3, 3}, {{1, 1024, 7, 7}}, 1024, 1024, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 924894208.},
/* GFLOPS 1.704 x 1 = 1.704 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 256, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1703781376.},
/* GFLOPS 1.660 x 1 = 1.660 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 128, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1659600000.},
/* GFLOPS 0.813 x 2 = 1.626 */ {{5, 5}, {{1, 144, 28, 28}}, 144, 144, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 812964096.},
/* GFLOPS 0.813 x 2 = 1.626 */ {{5, 5}, {{1, 288, 14, 14}}, 288, 288, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 812907648.},
/* GFLOPS 0.737 x 2 = 1.475 */ {{5, 5}, {{1, 240, 16, 16}}, 240, 240, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 737341440.},
/* GFLOPS 0.351 x 4 = 1.405 */ {{3, 3}, {{1, 96, 46, 46}}, 96, 96, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 351222144.},
/* GFLOPS 0.680 x 2 = 1.360 */ {{3, 3}, {{1, 96, 64, 64}}, 96, 96, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 679870464.},
/* GFLOPS 0.677 x 2 = 1.355 */ {{5, 5}, {{1, 40, 184, 184}}, 40, 40, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 677458560.},
/* GFLOPS 0.625 x 2 = 1.250 */ {{3, 3}, {{1, 32, 368, 368}}, 32, 32, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 625117184.},
/* GFLOPS 0.293 x 4 = 1.171 */ {{3, 3}, {{1, 288, 14, 14}}, 288, 288, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 292682880.},
/* GFLOPS 0.549 x 2 = 1.097 */ {{3, 3}, {{1, 120, 92, 92}}, 120, 120, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 548721120.},
/* GFLOPS 0.265 x 4 = 1.062 */ {{3, 3}, {{1, 240, 16, 16}}, 240, 240, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 265482240.},
/* GFLOPS 0.473 x 2 = 0.947 */ {{3, 3}, {{1, 16, 320, 320}}, 16, 16, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 473497600.},
/* GFLOPS 0.472 x 2 = 0.944 */ {{5, 5}, {{1, 96, 64, 64}}, 96, 96, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 471957504.},
/* GFLOPS 0.398 x 2 = 0.797 */ {{3, 3}, {{1, 672, 7, 7}}, 672, 672, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 398330016.},
/* GFLOPS 0.361 x 2 = 0.723 */ {{5, 5}, {{1, 336, 16, 16}}, 336, 336, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 361288704.},
/* GFLOPS 0.118 x 6 = 0.708 */ {{3, 3}, {{1, 64, 40, 40}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118067200.},
/* GFLOPS 0.118 x 6 = 0.708 */ {{5, 5}, {{1, 256, 6, 6}}, 256, 256, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 117974016.},
/* GFLOPS 0.336 x 2 = 0.672 */ {{5, 5}, {{1, 96, 56, 56}}, 96, 96, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 335993184.},
/* GFLOPS 0.265 x 2 = 0.531 */ {{5, 5}, {{1, 384, 14, 14}}, 384, 384, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 265434624.},
/* GFLOPS 0.472 x 1 = 0.472 */ {{5, 5}, {{1, 32, 96, 96}}, 32, 32, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 472154112.},
/* GFLOPS 0.232 x 2 = 0.463 */ {{3, 3}, {{1, 32, 112, 112}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 231612416.},
/* GFLOPS 0.231 x 2 = 0.463 */ {{3, 3}, {{1, 64, 112, 112}}, 64, 64, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231411712.},
/* GFLOPS 0.231 x 2 = 0.463 */ {{3, 3}, {{1, 128, 56, 56}}, 128, 128, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231311360.},
/* GFLOPS 0.231 x 2 = 0.463 */ {{3, 3}, {{1, 256, 28, 28}}, 256, 256, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231261184.},
/* GFLOPS 0.231 x 2 = 0.462 */ {{3, 3}, {{1, 512, 14, 14}}, 512, 512, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231236096.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 128, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 426037760.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 256, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 425945344.},
/* GFLOPS 0.415 x 1 = 0.415 */ {{3, 3}, {{1, 32, 150, 150}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 415440000.},
/* GFLOPS 0.415 x 1 = 0.415 */ {{3, 3}, {{1, 64, 150, 150}}, 64, 64, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 415080000.},
/* GFLOPS 0.170 x 2 = 0.341 */ {{3, 3}, {{1, 24, 128, 128}}, 24, 24, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 170262528.},
/* GFLOPS 0.157 x 2 = 0.314 */ {{3, 3}, {{1, 8, 368, 368}}, 8, 8, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 157091840.},
/* GFLOPS 0.076 x 4 = 0.304 */ {{3, 3}, {{1, 8, 256, 256}}, 8, 8, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 76021760.},
/* GFLOPS 0.130 x 2 = 0.261 */ {{3, 3}, {{1, 24, 112, 112}}, 24, 24, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 130357248.},
/* GFLOPS 0.118 x 2 = 0.237 */ {{3, 3}, {{1, 16, 160, 160}}, 16, 16, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118374400.},
/* GFLOPS 0.113 x 2 = 0.226 */ {{5, 5}, {{1, 32, 96, 96}}, 32, 32, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 113171488.},
/* GFLOPS 0.108 x 2 = 0.217 */ {{5, 5}, {{1, 64, 48, 48}}, 64, 64, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 108373056.},
/* GFLOPS 0.099 x 2 = 0.198 */ {{5, 5}, {{1, 128, 24, 24}}, 128, 128, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 99138688.},
/* GFLOPS 0.096 x 2 = 0.191 */ {{3, 3}, {{1, 144, 32, 32}}, 144, 144, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 95588352.},
/* GFLOPS 0.030 x 6 = 0.177 */ {{3, 3}, {{1, 64, 20, 20}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 29516800.},
/* GFLOPS 0.082 x 2 = 0.164 */ {{5, 5}, {{1, 256, 12, 12}}, 256, 256, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 81926400.},
/* GFLOPS 0.076 x 2 = 0.151 */ {{3, 3}, {{1, 32, 64, 64}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 75628544.},
/* GFLOPS 0.076 x 2 = 0.151 */ {{3, 3}, {{1, 32, 128, 128}}, 32, 32, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 75628544.},
/* GFLOPS 0.063 x 2 = 0.126 */ {{3, 3}, {{1, 144, 28, 28}}, 144, 144, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 63103248.},
/* GFLOPS 0.019 x 6 = 0.114 */ {{3, 3}, {{1, 8, 128, 128}}, 8, 8, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 19005440.},
/* GFLOPS 0.019 x 2 = 0.038 */ {{3, 3}, {{1, 16, 64, 64}}, 16, 16, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 18939904.},
/* GFLOPS 0.014 x 2 = 0.029 */ {{3, 3}, {{1, 56, 16, 16}}, 56, 56, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 14465024.},
/* GFLOPS 0.012 x 2 = 0.023 */ {{3, 3}, {{1, 10, 80, 80}}, 10, 10, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 11584000.},
/* GFLOPS 0.011 x 2 = 0.021 */ {{3, 3}, {{1, 24, 32, 32}}, 24, 24, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 10641408.},
/* GFLOPS 0.003 x 6 = 0.016 */ {{3, 3}, {{1, 192, 2, 2}}, 192, 192, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2654976.},
/* GFLOPS 0.004 x 2 = 0.008 */ {{3, 3}, {{1, 1, 32, 100}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3891200.},
/* GFLOPS 0.003 x 2 = 0.006 */ {{3, 3}, {{1, 10, 40, 40}}, 10, 10, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2896000.},
/* GFLOPS 0.002 x 2 = 0.004 */ {{3, 3}, {{1, 4, 80, 80}}, 4, 4, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1868800.},
/* GFLOPS 0.001 x 2 = 0.001 */ {{3, 3}, {{1, 10, 20, 20}}, 10, 10, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 724000.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{3, 3}, {{1, 192, 4, 4}}, 192, 192, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 663744.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{3, 3}, {{1, 4, 40, 40}}, 4, 4, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 467200.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{3, 3}, {{1, 1, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 121600.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{3, 3}, {{1, 4, 20, 20}}, 4, 4, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 116800.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{3, 3}, {{1, 1, 40, 40}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 30400.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{3, 3}, {{1, 1, 20, 20}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 7600.},
};
struct ConvParamGenerator
{
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
ConvParamGenerator(const ConvParam_t* testConfigs, const int size): testConfigs(testConfigs), size(size)
{}
const ConvParam_t* testConfigs;
const int size;
::testing::internal::ParamGenerator<ConvParam_t> all() const
{
int NUM = size;
static size_t DNN_LIMIT_CONV = utils::getConfigurationParameterSizeT("OPENCV_TEST_DNN_LIMIT_CONV", 0);
if (DNN_LIMIT_CONV > 0)
NUM = std::min(NUM, (int)DNN_LIMIT_CONV);
std::vector<ConvParam_t> v_(NUM);
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
for (int i = 0; i < NUM; ++i) { v_[i] = testConfigs[i]; } // reduce generated code size
return ::testing::ValuesIn(v_);
}
};
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
static inline void PrintTo(const ConvParam_t& p, std::ostream* os)
{
*os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9)
<< ", K=" << (Size)p.kernel
<< ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << ", " << p.shapeIn.dims[3] << "}"
<< ", OCN=" << p.outCN;
if (p.groups > 1)
*os << ", G=" << p.groups;
if (((Size)p.stride).area() != 1)
*os << ", S=" << ((Size)p.stride);
if (((Size)p.dilation).area() != 1)
*os << ", D=" << ((Size)p.dilation);
if (!((Size)p.pad).empty())
*os << ", P=" << ((Size)p.pad);
if (!((Size)p.padAdjust).empty())
*os << ", PAdj=" << ((Size)p.padAdjust);
if (!((std::string)p.padMode).empty())
*os << ", PM=" << ((std::string)p.padMode);
if (p.hasBias)
*os << ", BIAS";
}
static
Net build_net(
const ConvParam_t& params, Backend backendId, Target targetId,
const std::function<void(Net&)>& configure_network_cb = std::function<void(Net&)>(),
double flops_limit_debug_long = 2e9, double flops_limit_debug_verylong = 6e9
)
{
double declared_flops = params.declared_flops;
if (flops_limit_debug_verylong > 0 && declared_flops >= flops_limit_debug_verylong)
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
if (flops_limit_debug_long > 0 && declared_flops >= flops_limit_debug_long)
applyTestTag(CV_TEST_TAG_DEBUG_LONG);
Size kernel = params.kernel;
MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 4);
int outChannels = params.outCN;
int groups = params.groups;
Size stride = params.stride;
Size dilation = params.dilation;
Size pad = params.pad;
Size padAdjust = params.padAdjust;
std::string padMode(params.padMode);
bool hasBias = params.hasBias;
int inChannels = inputShape[1];
Size inSize(inputShape[3], inputShape[2]);
int sz[] = {outChannels, inChannels / groups, kernel.height, kernel.width};
Mat weights(4, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams lp;
lp.set("kernel_w", kernel.width);
lp.set("kernel_h", kernel.height);
lp.set("pad_w", pad.width);
lp.set("pad_h", pad.height);
if (padAdjust.width > 0 || padAdjust.height > 0)
{
lp.set("adj_w", padAdjust.width);
lp.set("adj_h", padAdjust.height);
}
if (!padMode.empty())
lp.set("pad_mode", padMode);
lp.set("stride_w", stride.width);
lp.set("stride_h", stride.height);
lp.set("dilation_w", dilation.width);
lp.set("dilation_h", dilation.height);
lp.set("num_output", outChannels);
lp.set("group", groups);
lp.set("bias_term", hasBias);
lp.type = "Convolution";
lp.name = "testLayer";
lp.blobs.push_back(weights);
if (hasBias)
{
Mat bias(1, outChannels, CV_32F);
randu(bias, -1.0f, 1.0f);
lp.blobs.push_back(bias);
}
int inpSz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &inpSz[0], CV_32F);
randu(input, -1.0f, 1.0f);
Net net;
net.addLayerToPrev(lp.name, lp.type, lp);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
if (configure_network_cb)
{
configure_network_cb(net);
}
net.setInput(input);
// warmup
Mat output = net.forward();
2017-09-22 20:15:57 +08:00
MatShape netInputShape = shape(input);
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference Added int32, int64 support and type inference to dnn #24411 **Added a type inference to dnn similar to the shape inference, added int32 and int64 support.** - Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type - Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types - All layers output blobs are now allocated using the calculated types from the type inference. - Inputs and constants with int32 and int64 types are not automatically converted into float32 now. - Added int32 and int64 support for all the layers with indexing and for all the layers required in tests. Added int32 and int64 support for CUDA: - Added host<->device data moving for int32 and int64 - Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates) Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model) **CURRENT PROBLEMS**: - ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102) - I didn't add type inference and int support to VULCAN, so it doesn't work at all now. - Some layers don't support int yet, so some unknown models may not work. **CURRENT WORKAROUNDS**: - CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion) - CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion - CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion) **DISABLED TESTS**: - RAFT model **REMOVED TESTS**: - Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant) **TODO IN NEXT PULL REQUESTS**: - Add int64 support for ONNX parser - Add int support for more layers - Add int support for OCL (currently int layers just run on CPU) - Add int tests - Add int support for other backends
2024-03-01 22:07:38 +08:00
cv::dnn::MatType netInputType = input.depth();
bool fp16 = false;
#ifdef HAVE_OPENCL
fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
#endif
if (netInputType == CV_32F && fp16 && targetId == DNN_TARGET_OPENCL_FP16)
netInputType = CV_16F;
size_t weightsMemory = 0, blobsMemory = 0;
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference Added int32, int64 support and type inference to dnn #24411 **Added a type inference to dnn similar to the shape inference, added int32 and int64 support.** - Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type - Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types - All layers output blobs are now allocated using the calculated types from the type inference. - Inputs and constants with int32 and int64 types are not automatically converted into float32 now. - Added int32 and int64 support for all the layers with indexing and for all the layers required in tests. Added int32 and int64 support for CUDA: - Added host<->device data moving for int32 and int64 - Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates) Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model) **CURRENT PROBLEMS**: - ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102) - I didn't add type inference and int support to VULCAN, so it doesn't work at all now. - Some layers don't support int yet, so some unknown models may not work. **CURRENT WORKAROUNDS**: - CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion) - CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion - CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion) **DISABLED TESTS**: - RAFT model **REMOVED TESTS**: - Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant) **TODO IN NEXT PULL REQUESTS**: - Add int64 support for ONNX parser - Add int support for more layers - Add int support for OCL (currently int layers just run on CPU) - Add int tests - Add int support for other backends
2024-03-01 22:07:38 +08:00
net.getMemoryConsumption(netInputShape, netInputType, weightsMemory, blobsMemory);
int64 flops = net.getFLOPS(netInputShape, netInputType);
CV_Assert(flops > 0);
std::cout
<< "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape
<< " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output)
<< " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb"
<< " MFLOPS=" << flops * 1e-6 << std::endl;
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6);
return net;
}
typedef tuple<ConvParam_t, tuple<Backend, Target> > ConvTestParam_t;
typedef tuple<ConvParam_t, tuple<Backend, Target>, bool> Conv3x3S1D1TestParam_t;
typedef TestBaseWithParam<ConvTestParam_t> Conv;
typedef TestBaseWithParam<ConvTestParam_t> Conv_1x1;
typedef TestBaseWithParam<Conv3x3S1D1TestParam_t> Conv_3x3S1D1;
typedef TestBaseWithParam<ConvTestParam_t> Conv_Depthwise;
PERF_TEST_P_(Conv, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
Net net = build_net(params, backendId, targetId);
TEST_CYCLE()
{
Mat res = net.forward();
}
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
SANITY_CHECK_NOTHING();
}
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
PERF_TEST_P_(Conv_1x1, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
Net net = build_net(params, backendId, targetId);
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
PERF_TEST_P_(Conv_3x3S1D1, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
bool winograd = get<2>(GetParam());
Net net = build_net(params, backendId, targetId,
[=](Net& net)
{
net.enableWinograd(winograd);
}
);
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST_P_(Conv_Depthwise, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
Net net = build_net(params, backendId, targetId, std::function<void(Net&)>(),
0/*flops_limit_debug_long*/, 0/*flops_limit_debug_verylong*/);
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
ConvParamGenerator conv_params(testConvolution_Configs, sizeof(testConvolution_Configs) / sizeof(testConvolution_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv, Combine(
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
2023-12-12 02:35:33 +08:00
conv_params.all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
ConvParamGenerator conv_1x1_params(testConvolution_1x1_Configs, sizeof(testConvolution_1x1_Configs) / sizeof(testConvolution_1x1_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv_1x1, Combine(
conv_1x1_params.all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
ConvParamGenerator conv_3x3S1D1_params(testConvolution_3x3S1D1_Configs, sizeof(testConvolution_3x3S1D1_Configs) / sizeof(testConvolution_3x3S1D1_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv_3x3S1D1, Combine(
conv_3x3S1D1_params.all(),
dnnBackendsAndTargets(false, false), // defined in ../test/test_common.hpp
testing::Values(true, false) // enable Winograd or not
));
ConvParamGenerator conv_depthwise_params(testConvolution_Depthwise_Configs, sizeof(testConvolution_Depthwise_Configs) / sizeof(testConvolution_Depthwise_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv_Depthwise, Combine(
conv_depthwise_params.all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
2017-09-22 20:15:57 +08:00
} // namespace