opencv/modules/gpu/src/imgproc_gpu.cpp

1280 lines
55 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
void cv::gpu::remap(const GpuMat&, GpuMat&, const GpuMat&, const GpuMat&){ throw_nogpu(); }
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); }
2010-10-11 22:25:30 +08:00
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, const Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, const Stream&) { throw_nogpu(); }
void cv::gpu::cvtColor(const GpuMat&, GpuMat&, int, int) { throw_nogpu(); }
void cv::gpu::cvtColor(const GpuMat&, GpuMat&, int, int, const Stream&) { throw_nogpu(); }
double cv::gpu::threshold(const GpuMat&, GpuMat&, double) { throw_nogpu(); return 0.0; }
void cv::gpu::resize(const GpuMat&, GpuMat&, Size, double, double, int) { throw_nogpu(); }
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, const Scalar&) { throw_nogpu(); }
void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int) { throw_nogpu(); }
void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int) { throw_nogpu(); }
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int) { throw_nogpu(); }
void cv::gpu::integral(GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
2010-07-23 23:04:16 +08:00
namespace cv { namespace gpu
{
namespace improc
2010-07-23 23:04:16 +08:00
{
void remap_gpu_1c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst);
void remap_gpu_3c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst);
extern "C" void meanShiftFiltering_gpu(const DevMem2D& src, DevMem2D dst, int sp, int sr, int maxIter, float eps);
2010-10-11 22:25:30 +08:00
extern "C" void meanShiftProc_gpu(const DevMem2D& src, DevMem2D dstr, DevMem2D dstsp, int sp, int sr, int maxIter, float eps);
void drawColorDisp_gpu(const DevMem2D& src, const DevMem2D& dst, int ndisp, const cudaStream_t& stream);
void drawColorDisp_gpu(const DevMem2D_<short>& src, const DevMem2D& dst, int ndisp, const cudaStream_t& stream);
2010-08-23 22:19:22 +08:00
void reprojectImageTo3D_gpu(const DevMem2D& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
void reprojectImageTo3D_gpu(const DevMem2D_<short>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
void RGB2RGB_gpu_8u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, cudaStream_t stream);
void RGB2RGB_gpu_16u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, cudaStream_t stream);
void RGB2RGB_gpu_32f(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, cudaStream_t stream);
void RGB5x52RGB_gpu(const DevMem2D& src, int green_bits, const DevMem2D& dst, int dstcn, int bidx, cudaStream_t stream);
void RGB2RGB5x5_gpu(const DevMem2D& src, int srccn, const DevMem2D& dst, int green_bits, int bidx, cudaStream_t stream);
void Gray2RGB_gpu_8u(const DevMem2D& src, const DevMem2D& dst, int dstcn, cudaStream_t stream);
void Gray2RGB_gpu_16u(const DevMem2D& src, const DevMem2D& dst, int dstcn, cudaStream_t stream);
void Gray2RGB_gpu_32f(const DevMem2D& src, const DevMem2D& dst, int dstcn, cudaStream_t stream);
void Gray2RGB5x5_gpu(const DevMem2D& src, const DevMem2D& dst, int green_bits, cudaStream_t stream);
void RGB2Gray_gpu_8u(const DevMem2D& src, int srccn, const DevMem2D& dst, int bidx, cudaStream_t stream);
void RGB2Gray_gpu_16u(const DevMem2D& src, int srccn, const DevMem2D& dst, int bidx, cudaStream_t stream);
void RGB2Gray_gpu_32f(const DevMem2D& src, int srccn, const DevMem2D& dst, int bidx, cudaStream_t stream);
void RGB5x52Gray_gpu(const DevMem2D& src, int green_bits, const DevMem2D& dst, cudaStream_t stream);
void RGB2YCrCb_gpu_8u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, const int* coeffs, cudaStream_t stream);
void RGB2YCrCb_gpu_16u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, const int* coeffs, cudaStream_t stream);
void RGB2YCrCb_gpu_32f(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, const float* coeffs, cudaStream_t stream);
void YCrCb2RGB_gpu_8u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, const int* coeffs, cudaStream_t stream);
void YCrCb2RGB_gpu_16u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, const int* coeffs, cudaStream_t stream);
void YCrCb2RGB_gpu_32f(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, int bidx, const float* coeffs, cudaStream_t stream);
void RGB2XYZ_gpu_8u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, const int* coeffs, cudaStream_t stream);
void RGB2XYZ_gpu_16u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, const int* coeffs, cudaStream_t stream);
void RGB2XYZ_gpu_32f(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, const float* coeffs, cudaStream_t stream);
void XYZ2RGB_gpu_8u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, const int* coeffs, cudaStream_t stream);
void XYZ2RGB_gpu_16u(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, const int* coeffs, cudaStream_t stream);
void XYZ2RGB_gpu_32f(const DevMem2D& src, int srccn, const DevMem2D& dst, int dstcn, const float* coeffs, cudaStream_t stream);
2010-07-23 23:04:16 +08:00
}
}}
////////////////////////////////////////////////////////////////////////
// remap
void cv::gpu::remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap)
{
typedef void (*remap_gpu_t)(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst);
static const remap_gpu_t callers[] = {improc::remap_gpu_1c, 0, improc::remap_gpu_3c};
CV_Assert((src.type() == CV_8U || src.type() == CV_8UC3) && xmap.type() == CV_32F && ymap.type() == CV_32F);
GpuMat out;
if (dst.data != src.data)
out = dst;
out.create(xmap.size(), src.type());
callers[src.channels() - 1](src, xmap, ymap, out);
2010-07-23 23:04:16 +08:00
dst = out;
}
////////////////////////////////////////////////////////////////////////
// meanShiftFiltering_GPU
void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria)
{
if( src.empty() )
CV_Error( CV_StsBadArg, "The input image is empty" );
if( src.depth() != CV_8U || src.channels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dst.create( src.size(), CV_8UC4 );
if( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
float eps;
if( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
eps = (float)std::max(criteria.epsilon, 0.0);
improc::meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps);
}
////////////////////////////////////////////////////////////////////////
2010-10-11 22:25:30 +08:00
// meanShiftProc_GPU
void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria)
{
if( src.empty() )
CV_Error( CV_StsBadArg, "The input image is empty" );
if( src.depth() != CV_8U || src.channels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dstr.create( src.size(), CV_8UC4 );
dstsp.create( src.size(), CV_16SC2 );
if( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
float eps;
if( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
eps = (float)std::max(criteria.epsilon, 0.0);
improc::meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps);
}
////////////////////////////////////////////////////////////////////////
// drawColorDisp
namespace
{
template <typename T>
void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream)
{
GpuMat out;
if (dst.data != src.data)
out = dst;
out.create(src.size(), CV_8UC4);
improc::drawColorDisp_gpu((DevMem2D_<T>)src, out, ndisp, stream);
dst = out;
}
typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream);
const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller<unsigned char>, 0, 0, drawColorDisp_caller<short>, 0, 0, 0, 0};
}
void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp)
{
CV_Assert(src.type() == CV_8U || src.type() == CV_16S);
drawColorDisp_callers[src.type()](src, dst, ndisp, 0);
}
void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, const Stream& stream)
{
CV_Assert(src.type() == CV_8U || src.type() == CV_16S);
drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D
2010-08-23 22:19:22 +08:00
namespace
{
template <typename T>
void reprojectImageTo3D_caller(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream)
{
xyzw.create(disp.rows, disp.cols, CV_32FC4);
improc::reprojectImageTo3D_gpu((DevMem2D_<T>)disp, xyzw, Q.ptr<float>(), stream);
2010-08-23 22:19:22 +08:00
}
typedef void (*reprojectImageTo3D_caller_t)(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream);
const reprojectImageTo3D_caller_t reprojectImageTo3D_callers[] = {reprojectImageTo3D_caller<unsigned char>, 0, 0, reprojectImageTo3D_caller<short>, 0, 0, 0, 0};
2010-08-23 22:19:22 +08:00
}
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q)
2010-08-23 22:19:22 +08:00
{
CV_Assert((disp.type() == CV_8U || disp.type() == CV_16S) && Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4);
reprojectImageTo3D_callers[disp.type()](disp, xyzw, Q, 0);
}
2010-08-23 22:19:22 +08:00
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const Stream& stream)
{
CV_Assert((disp.type() == CV_8U || disp.type() == CV_16S) && Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4);
2010-08-23 22:19:22 +08:00
reprojectImageTo3D_callers[disp.type()](disp, xyzw, Q, StreamAccessor::getStream(stream));
2010-08-23 22:19:22 +08:00
}
////////////////////////////////////////////////////////////////////////
// cvtColor
namespace
{
#undef R2Y
#undef G2Y
#undef B2Y
enum
{
yuv_shift = 14,
xyz_shift = 12,
R2Y = 4899,
G2Y = 9617,
B2Y = 1868,
BLOCK_SIZE = 256
};
}
namespace
{
void cvtColor_caller(const GpuMat& src, GpuMat& dst, int code, int dcn, const cudaStream_t& stream)
{
Size sz = src.size();
int scn = src.channels(), depth = src.depth(), bidx;
CV_Assert(depth == CV_8U || depth == CV_16U || depth == CV_32F);
GpuMat out;
if (dst.data != src.data)
out = dst;
NppiSize nppsz;
nppsz.height = src.rows;
nppsz.width = src.cols;
switch (code)
{
case CV_BGR2BGRA: case CV_RGB2BGRA: case CV_BGRA2BGR:
case CV_RGBA2BGR: case CV_RGB2BGR: case CV_BGRA2RGBA:
CV_Assert(scn == 3 || scn == 4);
dcn = code == CV_BGR2BGRA || code == CV_RGB2BGRA || code == CV_BGRA2RGBA ? 4 : 3;
bidx = code == CV_BGR2BGRA || code == CV_BGRA2BGR ? 0 : 2;
out.create(sz, CV_MAKETYPE(depth, dcn));
if( depth == CV_8U )
improc::RGB2RGB_gpu_8u(src, scn, out, dcn, bidx, stream);
else if( depth == CV_16U )
improc::RGB2RGB_gpu_16u(src, scn, out, dcn, bidx, stream);
else
improc::RGB2RGB_gpu_32f(src, scn, out, dcn, bidx, stream);
break;
case CV_BGR2BGR565: case CV_BGR2BGR555: case CV_RGB2BGR565: case CV_RGB2BGR555:
case CV_BGRA2BGR565: case CV_BGRA2BGR555: case CV_RGBA2BGR565: case CV_RGBA2BGR555:
CV_Assert( (scn == 3 || scn == 4) && depth == CV_8U );
out.create(sz, CV_8UC2);
improc::RGB2RGB5x5_gpu(src, scn, out, code == CV_BGR2BGR565 || code == CV_RGB2BGR565 ||
code == CV_BGRA2BGR565 || code == CV_RGBA2BGR565 ? 6 : 5,
code == CV_BGR2BGR565 || code == CV_BGR2BGR555 ||
code == CV_BGRA2BGR565 || code == CV_BGRA2BGR555 ? 0 : 2,
stream);
break;
case CV_BGR5652BGR: case CV_BGR5552BGR: case CV_BGR5652RGB: case CV_BGR5552RGB:
case CV_BGR5652BGRA: case CV_BGR5552BGRA: case CV_BGR5652RGBA: case CV_BGR5552RGBA:
if(dcn <= 0) dcn = 3;
CV_Assert( (dcn == 3 || dcn == 4) && scn == 2 && depth == CV_8U );
out.create(sz, CV_MAKETYPE(depth, dcn));
improc::RGB5x52RGB_gpu(src,
code == CV_BGR5652BGR || code == CV_BGR5652RGB ||
code == CV_BGR5652BGRA || code == CV_BGR5652RGBA ? 6 : 5,
out, dcn,
code == CV_BGR5652BGR || code == CV_BGR5552BGR ||
code == CV_BGR5652BGRA || code == CV_BGR5552BGRA ? 0 : 2,
stream);
break;
case CV_BGR2GRAY: case CV_BGRA2GRAY: case CV_RGB2GRAY: case CV_RGBA2GRAY:
CV_Assert(scn == 3 || scn == 4);
out.create(sz, CV_MAKETYPE(depth, 1));
bidx = code == CV_BGR2GRAY || code == CV_BGRA2GRAY ? 0 : 2;
if( depth == CV_8U )
improc::RGB2Gray_gpu_8u(src, scn, out, bidx, stream);
else if( depth == CV_16U )
improc::RGB2Gray_gpu_16u(src, scn, out, bidx, stream);
else
improc::RGB2Gray_gpu_32f(src, scn, out, bidx, stream);
break;
case CV_BGR5652GRAY: case CV_BGR5552GRAY:
CV_Assert( scn == 2 && depth == CV_8U );
out.create(sz, CV_8UC1);
improc::RGB5x52Gray_gpu(src, code == CV_BGR5652GRAY ? 6 : 5, out, stream);
break;
case CV_GRAY2BGR: case CV_GRAY2BGRA:
if (dcn <= 0)
dcn = 3;
CV_Assert(scn == 1 && (dcn == 3 || dcn == 4));
out.create(sz, CV_MAKETYPE(depth, dcn));
if( depth == CV_8U )
improc::Gray2RGB_gpu_8u(src, out, dcn, stream);
else if( depth == CV_16U )
improc::Gray2RGB_gpu_16u(src, out, dcn, stream);
else
improc::Gray2RGB_gpu_32f(src, out, dcn, stream);
break;
case CV_GRAY2BGR565: case CV_GRAY2BGR555:
CV_Assert( scn == 1 && depth == CV_8U );
out.create(sz, CV_8UC2);
improc::Gray2RGB5x5_gpu(src, out, code == CV_GRAY2BGR565 ? 6 : 5, stream);
break;
case CV_BGR2YCrCb: case CV_RGB2YCrCb:
case CV_BGR2YUV: case CV_RGB2YUV:
{
if(dcn <= 0) dcn = 3;
CV_Assert( (scn == 3 || scn == 4) && (dcn == 3 || dcn == 4) );
bidx = code == CV_BGR2YCrCb || code == CV_RGB2YUV ? 0 : 2;
static const float yuv_f[] = { 0.114f, 0.587f, 0.299f, 0.492f, 0.877f };
static const int yuv_i[] = { B2Y, G2Y, R2Y, 8061, 14369 };
static const float YCrCb_f[] = {0.299f, 0.587f, 0.114f, 0.713f, 0.564f};
static const int YCrCb_i[] = {R2Y, G2Y, B2Y, 11682, 9241};
float coeffs_f[5];
int coeffs_i[5];
::memcpy(coeffs_f, code == CV_BGR2YCrCb || code == CV_RGB2YCrCb ? YCrCb_f : yuv_f, 5 * sizeof(float));
::memcpy(coeffs_i, code == CV_BGR2YCrCb || code == CV_RGB2YCrCb ? YCrCb_i : yuv_i, 5 * sizeof(int));
if (bidx==0)
{
std::swap(coeffs_f[0], coeffs_f[2]);
std::swap(coeffs_i[0], coeffs_i[2]);
}
out.create(sz, CV_MAKETYPE(depth, dcn));
if( depth == CV_8U )
improc::RGB2YCrCb_gpu_8u(src, scn, out, dcn, bidx, coeffs_i, stream);
else if( depth == CV_16U )
improc::RGB2YCrCb_gpu_16u(src, scn, out, dcn, bidx, coeffs_i, stream);
else
improc::RGB2YCrCb_gpu_32f(src, scn, out, dcn, bidx, coeffs_f, stream);
}
break;
case CV_YCrCb2BGR: case CV_YCrCb2RGB:
case CV_YUV2BGR: case CV_YUV2RGB:
{
if (dcn <= 0) dcn = 3;
CV_Assert( (scn == 3 || scn == 4) && (dcn == 3 || dcn == 4) );
bidx = code == CV_YCrCb2BGR || code == CV_YUV2RGB ? 0 : 2;
static const float yuv_f[] = { 2.032f, -0.395f, -0.581f, 1.140f };
static const int yuv_i[] = { 33292, -6472, -9519, 18678 };
static const float YCrCb_f[] = {1.403f, -0.714f, -0.344f, 1.773f};
static const int YCrCb_i[] = {22987, -11698, -5636, 29049};
const float* coeffs_f = code == CV_YCrCb2BGR || code == CV_YCrCb2RGB ? YCrCb_f : yuv_f;
const int* coeffs_i = code == CV_YCrCb2BGR || code == CV_YCrCb2RGB ? YCrCb_i : yuv_i;
out.create(sz, CV_MAKETYPE(depth, dcn));
if( depth == CV_8U )
improc::YCrCb2RGB_gpu_8u(src, scn, out, dcn, bidx, coeffs_i, stream);
else if( depth == CV_16U )
improc::YCrCb2RGB_gpu_16u(src, scn, out, dcn, bidx, coeffs_i, stream);
else
improc::YCrCb2RGB_gpu_32f(src, scn, out, dcn, bidx, coeffs_f, stream);
}
break;
case CV_BGR2XYZ: case CV_RGB2XYZ:
{
if(dcn <= 0) dcn = 3;
CV_Assert( (scn == 3 || scn == 4) && (dcn == 3 || dcn == 4) );
bidx = code == CV_BGR2XYZ ? 0 : 2;
static const float RGB2XYZ_D65f[] =
{
0.412453f, 0.357580f, 0.180423f,
0.212671f, 0.715160f, 0.072169f,
0.019334f, 0.119193f, 0.950227f
};
static const int RGB2XYZ_D65i[] =
{
1689, 1465, 739,
871, 2929, 296,
79, 488, 3892
};
float coeffs_f[9];
int coeffs_i[9];
::memcpy(coeffs_f, RGB2XYZ_D65f, 9 * sizeof(float));
::memcpy(coeffs_i, RGB2XYZ_D65i, 9 * sizeof(int));
if (bidx == 0)
{
std::swap(coeffs_f[0], coeffs_f[2]);
std::swap(coeffs_f[3], coeffs_f[5]);
std::swap(coeffs_f[6], coeffs_f[8]);
std::swap(coeffs_i[0], coeffs_i[2]);
std::swap(coeffs_i[3], coeffs_i[5]);
std::swap(coeffs_i[6], coeffs_i[8]);
}
out.create(sz, CV_MAKETYPE(depth, dcn));
if( depth == CV_8U )
improc::RGB2XYZ_gpu_8u(src, scn, out, dcn, coeffs_i, stream);
else if( depth == CV_16U )
improc::RGB2XYZ_gpu_16u(src, scn, out, dcn, coeffs_i, stream);
else
improc::RGB2XYZ_gpu_32f(src, scn, out, dcn, coeffs_f, stream);
}
break;
case CV_XYZ2BGR: case CV_XYZ2RGB:
{
if (dcn <= 0) dcn = 3;
CV_Assert( (scn == 3 || scn == 4) && (dcn == 3 || dcn == 4) );
bidx = code == CV_XYZ2BGR ? 0 : 2;
static const float XYZ2sRGB_D65f[] =
{
3.240479f, -1.53715f, -0.498535f,
-0.969256f, 1.875991f, 0.041556f,
0.055648f, -0.204043f, 1.057311f
};
static const int XYZ2sRGB_D65i[] =
{
13273, -6296, -2042,
-3970, 7684, 170,
228, -836, 4331
};
float coeffs_f[9];
int coeffs_i[9];
::memcpy(coeffs_f, XYZ2sRGB_D65f, 9 * sizeof(float));
::memcpy(coeffs_i, XYZ2sRGB_D65i, 9 * sizeof(int));
if (bidx == 0)
{
std::swap(coeffs_f[0], coeffs_f[6]);
std::swap(coeffs_f[1], coeffs_f[7]);
std::swap(coeffs_f[2], coeffs_f[8]);
std::swap(coeffs_i[0], coeffs_i[6]);
std::swap(coeffs_i[1], coeffs_i[7]);
std::swap(coeffs_i[2], coeffs_i[8]);
}
out.create(sz, CV_MAKETYPE(depth, dcn));
if( depth == CV_8U )
improc::XYZ2RGB_gpu_8u(src, scn, out, dcn, coeffs_i, stream);
else if( depth == CV_16U )
improc::XYZ2RGB_gpu_16u(src, scn, out, dcn, coeffs_i, stream);
else
improc::XYZ2RGB_gpu_32f(src, scn, out, dcn, coeffs_f, stream);
}
break;
//case CV_BGR2HSV: case CV_RGB2HSV: case CV_BGR2HSV_FULL: case CV_RGB2HSV_FULL:
//case CV_BGR2HLS: case CV_RGB2HLS: case CV_BGR2HLS_FULL: case CV_RGB2HLS_FULL:
// {
// CV_Assert( (scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F) );
// bidx = code == CV_BGR2HSV || code == CV_BGR2HLS ||
// code == CV_BGR2HSV_FULL || code == CV_BGR2HLS_FULL ? 0 : 2;
// int hrange = depth == CV_32F ? 360 : code == CV_BGR2HSV || code == CV_RGB2HSV ||
// code == CV_BGR2HLS || code == CV_RGB2HLS ? 180 : 255;
//
// dst.create(sz, CV_MAKETYPE(depth, 3));
//
// if( code == CV_BGR2HSV || code == CV_RGB2HSV ||
// code == CV_BGR2HSV_FULL || code == CV_RGB2HSV_FULL )
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, RGB2HSV_b(scn, bidx, hrange));
// else
// CvtColorLoop(src, dst, RGB2HSV_f(scn, bidx, (float)hrange));
// }
// else
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, RGB2HLS_b(scn, bidx, hrange));
// else
// CvtColorLoop(src, dst, RGB2HLS_f(scn, bidx, (float)hrange));
// }
// }
// break;
//case CV_HSV2BGR: case CV_HSV2RGB: case CV_HSV2BGR_FULL: case CV_HSV2RGB_FULL:
//case CV_HLS2BGR: case CV_HLS2RGB: case CV_HLS2BGR_FULL: case CV_HLS2RGB_FULL:
// {
// if( dcn <= 0 ) dcn = 3;
// CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) && (depth == CV_8U || depth == CV_32F) );
// bidx = code == CV_HSV2BGR || code == CV_HLS2BGR ||
// code == CV_HSV2BGR_FULL || code == CV_HLS2BGR_FULL ? 0 : 2;
// int hrange = depth == CV_32F ? 360 : code == CV_HSV2BGR || code == CV_HSV2RGB ||
// code == CV_HLS2BGR || code == CV_HLS2RGB ? 180 : 255;
//
// dst.create(sz, CV_MAKETYPE(depth, dcn));
//
// if( code == CV_HSV2BGR || code == CV_HSV2RGB ||
// code == CV_HSV2BGR_FULL || code == CV_HSV2RGB_FULL )
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, HSV2RGB_b(dcn, bidx, hrange));
// else
// CvtColorLoop(src, dst, HSV2RGB_f(dcn, bidx, (float)hrange));
// }
// else
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, HLS2RGB_b(dcn, bidx, hrange));
// else
// CvtColorLoop(src, dst, HLS2RGB_f(dcn, bidx, (float)hrange));
// }
// }
// break;
//case CV_BGR2Lab: case CV_RGB2Lab: case CV_LBGR2Lab: case CV_LRGB2Lab:
//case CV_BGR2Luv: case CV_RGB2Luv: case CV_LBGR2Luv: case CV_LRGB2Luv:
// {
// CV_Assert( (scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F) );
// bidx = code == CV_BGR2Lab || code == CV_BGR2Luv ||
// code == CV_LBGR2Lab || code == CV_LBGR2Luv ? 0 : 2;
// bool srgb = code == CV_BGR2Lab || code == CV_RGB2Lab ||
// code == CV_BGR2Luv || code == CV_RGB2Luv;
//
// dst.create(sz, CV_MAKETYPE(depth, 3));
//
// if( code == CV_BGR2Lab || code == CV_RGB2Lab ||
// code == CV_LBGR2Lab || code == CV_LRGB2Lab )
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, RGB2Lab_b(scn, bidx, 0, 0, srgb));
// else
// CvtColorLoop(src, dst, RGB2Lab_f(scn, bidx, 0, 0, srgb));
// }
// else
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, RGB2Luv_b(scn, bidx, 0, 0, srgb));
// else
// CvtColorLoop(src, dst, RGB2Luv_f(scn, bidx, 0, 0, srgb));
// }
// }
// break;
//case CV_Lab2BGR: case CV_Lab2RGB: case CV_Lab2LBGR: case CV_Lab2LRGB:
//case CV_Luv2BGR: case CV_Luv2RGB: case CV_Luv2LBGR: case CV_Luv2LRGB:
// {
// if( dcn <= 0 ) dcn = 3;
// CV_Assert( scn == 3 && (dcn == 3 || dcn == 4) && (depth == CV_8U || depth == CV_32F) );
// bidx = code == CV_Lab2BGR || code == CV_Luv2BGR ||
// code == CV_Lab2LBGR || code == CV_Luv2LBGR ? 0 : 2;
// bool srgb = code == CV_Lab2BGR || code == CV_Lab2RGB ||
// code == CV_Luv2BGR || code == CV_Luv2RGB;
//
// dst.create(sz, CV_MAKETYPE(depth, dcn));
//
// if( code == CV_Lab2BGR || code == CV_Lab2RGB ||
// code == CV_Lab2LBGR || code == CV_Lab2LRGB )
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, Lab2RGB_b(dcn, bidx, 0, 0, srgb));
// else
// CvtColorLoop(src, dst, Lab2RGB_f(dcn, bidx, 0, 0, srgb));
// }
// else
// {
// if( depth == CV_8U )
// CvtColorLoop(src, dst, Luv2RGB_b(dcn, bidx, 0, 0, srgb));
// else
// CvtColorLoop(src, dst, Luv2RGB_f(dcn, bidx, 0, 0, srgb));
// }
// }
// break;
//case CV_BayerBG2BGR: case CV_BayerGB2BGR: case CV_BayerRG2BGR: case CV_BayerGR2BGR:
//case CV_BayerBG2BGR_VNG: case CV_BayerGB2BGR_VNG: case CV_BayerRG2BGR_VNG: case CV_BayerGR2BGR_VNG:
// if(dcn <= 0) dcn = 3;
// CV_Assert( scn == 1 && dcn == 3 && depth == CV_8U );
// dst.create(sz, CV_8UC3);
//
// if( code == CV_BayerBG2BGR || code == CV_BayerGB2BGR ||
// code == CV_BayerRG2BGR || code == CV_BayerGR2BGR )
// Bayer2RGB_8u(src, dst, code);
// else
// Bayer2RGB_VNG_8u(src, dst, code);
// break;
default:
CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" );
}
dst = out;
}
}
void cv::gpu::cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn)
{
cvtColor_caller(src, dst, code, dcn, 0);
}
void cv::gpu::cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn, const Stream& stream)
{
cvtColor_caller(src, dst, code, dcn, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// threshold
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh)
{
CV_Assert(src.type() == CV_32FC1)
dst.create( src.size(), src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiThreshold_32f_C1R(src.ptr<Npp32f>(), src.step,
dst.ptr<Npp32f>(), dst.step, sz, static_cast<Npp32f>(thresh), NPP_CMP_GREATER) );
return thresh;
}
////////////////////////////////////////////////////////////////////////
// resize
void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation)
{
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR/*, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS*/};
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR/* || interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4*/);
CV_Assert( src.size().area() > 0 );
CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );
if( dsize == Size() )
{
dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
}
else
{
fx = (double)dsize.width / src.cols;
fy = (double)dsize.height / src.rows;
}
dst.create(dsize, src.type());
NppiSize srcsz;
srcsz.width = src.cols;
srcsz.height = src.rows;
NppiRect srcrect;
srcrect.x = srcrect.y = 0;
srcrect.width = src.cols;
srcrect.height = src.rows;
NppiSize dstsz;
dstsz.width = dst.cols;
dstsz.height = dst.rows;
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiResize_8u_C1R(src.ptr<Npp8u>(), srcsz, src.step, srcrect,
dst.ptr<Npp8u>(), dst.step, dstsz, fx, fy, npp_inter[interpolation]) );
}
else
{
nppSafeCall( nppiResize_8u_C4R(src.ptr<Npp8u>(), srcsz, src.step, srcrect,
dst.ptr<Npp8u>(), dst.step, dstsz, fx, fy, npp_inter[interpolation]) );
}
}
////////////////////////////////////////////////////////////////////////
// copyMakeBorder
void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1);
dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
NppiSize srcsz;
srcsz.width = src.cols;
srcsz.height = src.rows;
NppiSize dstsz;
dstsz.width = dst.cols;
dstsz.height = dst.rows;
switch (src.type())
{
case CV_8UC1:
{
Npp8u nVal = static_cast<Npp8u>(value[0]);
nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), src.step, srcsz,
dst.ptr<Npp8u>(), dst.step, dstsz, top, left, nVal) );
break;
}
case CV_8UC4:
{
Npp8u nVal[] = {static_cast<Npp8u>(value[0]), static_cast<Npp8u>(value[1]), static_cast<Npp8u>(value[2]), static_cast<Npp8u>(value[3])};
nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), src.step, srcsz,
dst.ptr<Npp8u>(), dst.step, dstsz, top, left, nVal) );
break;
}
case CV_32SC1:
{
Npp32s nVal = static_cast<Npp32s>(value[0]);
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), src.step, srcsz,
dst.ptr<Npp32s>(), dst.step, dstsz, top, left, nVal) );
break;
}
default:
CV_Assert(!"Unsupported source type");
}
}
////////////////////////////////////////////////////////////////////////
// warp
namespace
{
typedef NppStatus (*npp_warp_8u_t)(const Npp8u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp8u* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_warp_16u_t)(const Npp16u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp16u* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_warp_32s_t)(const Npp32s* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32s* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
typedef NppStatus (*npp_warp_32f_t)(const Npp32f* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32f* pDst,
int dstStep, NppiRect dstRoi, const double coeffs[][3],
int interpolation);
void nppWarpCaller(const GpuMat& src, GpuMat& dst, double coeffs[][3], const Size& dsize, int flags,
npp_warp_8u_t npp_warp_8u[][2], npp_warp_16u_t npp_warp_16u[][2],
npp_warp_32s_t npp_warp_32s[][2], npp_warp_32f_t npp_warp_32f[][2])
{
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
int interpolation = flags & INTER_MAX;
CV_Assert((src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F) && src.channels() != 2);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
NppiSize srcsz;
srcsz.height = src.rows;
srcsz.width = src.cols;
NppiRect srcroi;
srcroi.x = srcroi.y = 0;
srcroi.height = src.rows;
srcroi.width = src.cols;
NppiRect dstroi;
dstroi.x = dstroi.y = 0;
dstroi.height = dst.rows;
dstroi.width = dst.cols;
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
switch (src.depth())
{
case CV_8U:
nppSafeCall( npp_warp_8u[src.channels()][warpInd](src.ptr<Npp8u>(), srcsz, src.step, srcroi,
dst.ptr<Npp8u>(), dst.step, dstroi, coeffs, npp_inter[interpolation]) );
break;
case CV_16U:
nppSafeCall( npp_warp_16u[src.channels()][warpInd](src.ptr<Npp16u>(), srcsz, src.step, srcroi,
dst.ptr<Npp16u>(), dst.step, dstroi, coeffs, npp_inter[interpolation]) );
break;
case CV_32S:
nppSafeCall( npp_warp_32s[src.channels()][warpInd](src.ptr<Npp32s>(), srcsz, src.step, srcroi,
dst.ptr<Npp32s>(), dst.step, dstroi, coeffs, npp_inter[interpolation]) );
break;
case CV_32F:
nppSafeCall( npp_warp_32f[src.channels()][warpInd](src.ptr<Npp32f>(), srcsz, src.step, srcroi,
dst.ptr<Npp32f>(), dst.step, dstroi, coeffs, npp_inter[interpolation]) );
break;
default:
CV_Assert(!"Unsupported source type");
}
}
}
void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags)
{
static npp_warp_8u_t npp_warpAffine_8u[][2] =
{
{0, 0},
{nppiWarpAffine_8u_C1R, nppiWarpAffineBack_8u_C1R},
{0, 0},
{nppiWarpAffine_8u_C3R, nppiWarpAffineBack_8u_C3R},
{nppiWarpAffine_8u_C4R, nppiWarpAffineBack_8u_C4R}
};
static npp_warp_16u_t npp_warpAffine_16u[][2] =
{
{0, 0},
{nppiWarpAffine_16u_C1R, nppiWarpAffineBack_16u_C1R},
{0, 0},
{nppiWarpAffine_16u_C3R, nppiWarpAffineBack_16u_C3R},
{nppiWarpAffine_16u_C4R, nppiWarpAffineBack_16u_C4R}
};
static npp_warp_32s_t npp_warpAffine_32s[][2] =
{
{0, 0},
{nppiWarpAffine_32s_C1R, nppiWarpAffineBack_32s_C1R},
{0, 0},
{nppiWarpAffine_32s_C3R, nppiWarpAffineBack_32s_C3R},
{nppiWarpAffine_32s_C4R, nppiWarpAffineBack_32s_C4R}
};
static npp_warp_32f_t npp_warpAffine_32f[][2] =
{
{0, 0},
{nppiWarpAffine_32f_C1R, nppiWarpAffineBack_32f_C1R},
{0, 0},
{nppiWarpAffine_32f_C3R, nppiWarpAffineBack_32f_C3R},
{nppiWarpAffine_32f_C4R, nppiWarpAffineBack_32f_C4R}
};
CV_Assert(M.rows == 2 && M.cols == 3);
double coeffs[2][3];
Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
M.convertTo(coeffsMat, coeffsMat.type());
nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpAffine_8u, npp_warpAffine_16u, npp_warpAffine_32s, npp_warpAffine_32f);
}
void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags)
{
static npp_warp_8u_t npp_warpPerspective_8u[][2] =
{
{0, 0},
{nppiWarpPerspective_8u_C1R, nppiWarpPerspectiveBack_8u_C1R},
{0, 0},
{nppiWarpPerspective_8u_C3R, nppiWarpPerspectiveBack_8u_C3R},
{nppiWarpPerspective_8u_C4R, nppiWarpPerspectiveBack_8u_C4R}
};
static npp_warp_16u_t npp_warpPerspective_16u[][2] =
{
{0, 0},
{nppiWarpPerspective_16u_C1R, nppiWarpPerspectiveBack_16u_C1R},
{0, 0},
{nppiWarpPerspective_16u_C3R, nppiWarpPerspectiveBack_16u_C3R},
{nppiWarpPerspective_16u_C4R, nppiWarpPerspectiveBack_16u_C4R}
};
static npp_warp_32s_t npp_warpPerspective_32s[][2] =
{
{0, 0},
{nppiWarpPerspective_32s_C1R, nppiWarpPerspectiveBack_32s_C1R},
{0, 0},
{nppiWarpPerspective_32s_C3R, nppiWarpPerspectiveBack_32s_C3R},
{nppiWarpPerspective_32s_C4R, nppiWarpPerspectiveBack_32s_C4R}
};
static npp_warp_32f_t npp_warpPerspective_32f[][2] =
{
{0, 0},
{nppiWarpPerspective_32f_C1R, nppiWarpPerspectiveBack_32f_C1R},
{0, 0},
{nppiWarpPerspective_32f_C3R, nppiWarpPerspectiveBack_32f_C3R},
{nppiWarpPerspective_32f_C4R, nppiWarpPerspectiveBack_32f_C4R}
};
CV_Assert(M.rows == 3 && M.cols == 3);
double coeffs[3][3];
Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
M.convertTo(coeffsMat, coeffsMat.type());
nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpPerspective_8u, npp_warpPerspective_16u, npp_warpPerspective_32s, npp_warpPerspective_32f);
}
////////////////////////////////////////////////////////////////////////
// rotate
void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation)
{
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
NppiSize srcsz;
srcsz.height = src.rows;
srcsz.width = src.cols;
NppiRect srcroi;
srcroi.x = srcroi.y = 0;
srcroi.height = src.rows;
srcroi.width = src.cols;
NppiRect dstroi;
dstroi.x = dstroi.y = 0;
dstroi.height = dst.rows;
dstroi.width = dst.cols;
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiRotate_8u_C1R(src.ptr<Npp8u>(), srcsz, src.step, srcroi,
dst.ptr<Npp8u>(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
}
else
{
nppSafeCall( nppiRotate_8u_C4R(src.ptr<Npp8u>(), srcsz, src.step, srcroi,
dst.ptr<Npp8u>(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
}
}
////////////////////////////////////////////////////////////////////////
// integral
void cv::gpu::integral(GpuMat& src, GpuMat& sum, GpuMat& sqsum)
{
CV_Assert(src.type() == CV_8UC1);
int w = src.cols + 1, h = src.rows + 1;
sum.create(h, w, CV_32S);
sqsum.create(h, w, CV_32F);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiSqrIntegral_8u32s32f_C1R(src.ptr<Npp8u>(), src.step, sum.ptr<Npp32s>(),
sum.step, sqsum.ptr<Npp32f>(), sqsum.step, sz, 0, 0.0f, h) );
}
////////////////////////////////////////////////////////////////////////
// Canny
void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
{
CV_Assert(!"disabled until fix crash");
CV_Assert(image.type() == CV_8UC1);
GpuMat srcDx, srcDy;
Sobel(image, srcDx, -1, 1, 0, apertureSize);
Sobel(image, srcDy, -1, 0, 1, apertureSize);
srcDx.convertTo(srcDx, CV_32F);
srcDy.convertTo(srcDy, CV_32F);
edges.create(image.size(), CV_8UC1);
NppiSize sz;
sz.height = image.rows;
sz.width = image.cols;
int bufsz;
nppSafeCall( nppiCannyGetBufferSize(sz, &bufsz) );
GpuMat buf(1, bufsz, CV_8UC1);
nppSafeCall( nppiCanny_32f8u_C1R(srcDx.ptr<Npp32f>(), srcDx.step, srcDy.ptr<Npp32f>(), srcDy.step,
edges.ptr<Npp8u>(), edges.step, sz, (Npp32f)threshold1, (Npp32f)threshold2, buf.ptr<Npp8u>()) );
}
////////////////////////////////////////////////////////////////////////
// Histogram
namespace
{
template<int n> struct NPPTypeTraits;
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);
template<int SDEPTH> struct NppHistogramEvenFuncC1
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
};
template<int SDEPTH> struct NppHistogramEvenFuncC4
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
};
template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramEvenC1
{
typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel)
{
int levels = histSize + 1;
hist.create(1, histSize, CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
GpuMat buffer;
int buf_size;
get_buf_size(sz, levels, &buf_size);
buffer.create(1, buf_size, CV_8U);
nppSafeCall( func(src.ptr<src_t>(), src.step, sz, hist.ptr<Npp32s>(), levels,
lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
}
};
template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramEvenC4
{
typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4])
{
int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
hist[0].create(1, histSize[0], CV_32S);
hist[1].create(1, histSize[1], CV_32S);
hist[2].create(1, histSize[2], CV_32S);
hist[3].create(1, histSize[3], CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
GpuMat buffer;
int buf_size;
get_buf_size(sz, levels, &buf_size);
buffer.create(1, buf_size, CV_8U);
nppSafeCall( func(src.ptr<src_t>(), src.step, sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
}
};
template<int SDEPTH> struct NppHistogramRangeFuncC1
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
};
template<int SDEPTH> struct NppHistogramRangeFuncC4
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramRangeC1
{
typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels)
{
CV_Assert(levels.type() == CV_32SC1 && levels.rows == 1);
hist.create(1, levels.cols - 1, CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
GpuMat buffer;
int buf_size;
get_buf_size(sz, levels.cols, &buf_size);
buffer.create(1, buf_size, CV_8U);
nppSafeCall( func(src.ptr<src_t>(), src.step, sz, hist.ptr<Npp32s>(), levels.ptr<Npp32s>(), levels.cols, buffer.ptr<Npp8u>()) );
}
};
template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramRangeC4
{
typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4])
{
CV_Assert(levels[0].type() == CV_32SC1 && levels[0].rows == 1);
CV_Assert(levels[1].type() == CV_32SC1 && levels[1].rows == 1);
CV_Assert(levels[2].type() == CV_32SC1 && levels[2].rows == 1);
CV_Assert(levels[3].type() == CV_32SC1 && levels[3].rows == 1);
hist[0].create(1, levels[0].cols - 1, CV_32S);
hist[1].create(1, levels[1].cols - 1, CV_32S);
hist[2].create(1, levels[2].cols - 1, CV_32S);
hist[3].create(1, levels[3].cols - 1, CV_32S);
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
const Npp32s* pLevels[] = {levels[0].ptr<Npp32s>(), levels[1].ptr<Npp32s>(), levels[2].ptr<Npp32s>(), levels[3].ptr<Npp32s>()};
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
GpuMat buffer;
int buf_size;
get_buf_size(sz, nLevels, &buf_size);
buffer.create(1, buf_size, CV_8U);
nppSafeCall( func(src.ptr<src_t>(), src.step, sz, pHist, pLevels, nLevels, buffer.ptr<Npp8u>()) );
}
};
}
void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel)
{
Mat host_levels(1, nLevels, CV_32SC1);
nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
levels.upload(host_levels);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, int levels, int lowerLevel, int upperLevel);
static const hist_t hist_callers[] =
{
NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
0,
NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
};
hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4])
{
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4]);
static const hist_t hist_callers[] =
{
NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
0,
NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
};
hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel);
}
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1);
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels);
static const hist_t hist_callers[] =
{
NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
0,
NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist
};
hist_callers[src.depth()](src, hist, levels);
}
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4])
{
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4);
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4]);
static const hist_t hist_callers[] =
{
NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
0,
NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist
};
hist_callers[src.depth()](src, hist, levels);
}
#endif /* !defined (HAVE_CUDA) */