opencv/modules/gpu/src/pyramids.cpp

250 lines
10 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifndef HAVE_CUDA
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::build(const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::ImagePyramid::getLayer(GpuMat&, Size, Stream&) const { throw_nogpu(); }
#else // HAVE_CUDA
//////////////////////////////////////////////////////////////////////////////
// pyrDown
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T> void pyrDown_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
}}}
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device::imgproc;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{pyrDown_gpu<uchar> , 0 /*pyrDown_gpu<uchar2>*/ , pyrDown_gpu<uchar3> , pyrDown_gpu<uchar4> },
{0 /*pyrDown_gpu<schar>*/, 0 /*pyrDown_gpu<schar2>*/ , 0 /*pyrDown_gpu<schar3>*/, 0 /*pyrDown_gpu<schar4>*/},
{pyrDown_gpu<ushort> , 0 /*pyrDown_gpu<ushort2>*/, pyrDown_gpu<ushort3> , pyrDown_gpu<ushort4> },
{pyrDown_gpu<short> , 0 /*pyrDown_gpu<short2>*/ , pyrDown_gpu<short3> , pyrDown_gpu<short4> },
{0 /*pyrDown_gpu<int>*/ , 0 /*pyrDown_gpu<int2>*/ , 0 /*pyrDown_gpu<int3>*/ , 0 /*pyrDown_gpu<int4>*/ },
{pyrDown_gpu<float> , 0 /*pyrDown_gpu<float2>*/ , pyrDown_gpu<float3> , pyrDown_gpu<float4> }
};
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
const func_t func = funcs[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
func(src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// pyrUp
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T> void pyrUp_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
}}}
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device::imgproc;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{pyrUp_gpu<uchar> , 0 /*pyrUp_gpu<uchar2>*/ , pyrUp_gpu<uchar3> , pyrUp_gpu<uchar4> },
{0 /*pyrUp_gpu<schar>*/, 0 /*pyrUp_gpu<schar2>*/ , 0 /*pyrUp_gpu<schar3>*/, 0 /*pyrUp_gpu<schar4>*/},
{pyrUp_gpu<ushort> , 0 /*pyrUp_gpu<ushort2>*/, pyrUp_gpu<ushort3> , pyrUp_gpu<ushort4> },
{pyrUp_gpu<short> , 0 /*pyrUp_gpu<short2>*/ , pyrUp_gpu<short3> , pyrUp_gpu<short4> },
{0 /*pyrUp_gpu<int>*/ , 0 /*pyrUp_gpu<int2>*/ , 0 /*pyrUp_gpu<int3>*/ , 0 /*pyrUp_gpu<int4>*/ },
{pyrUp_gpu<float> , 0 /*pyrUp_gpu<float2>*/ , pyrUp_gpu<float3> , pyrUp_gpu<float4> }
};
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
const func_t func = funcs[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
dst.create(src.rows * 2, src.cols * 2, src.type());
func(src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// ImagePyramid
namespace cv { namespace gpu { namespace device
{
namespace pyramid
{
template <typename T> void kernelDownsampleX2_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void kernelInterpolateFrom1_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
}}}
void cv::gpu::ImagePyramid::build(const GpuMat& img, int numLayers, Stream& stream)
{
using namespace cv::gpu::device::pyramid;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{kernelDownsampleX2_gpu<uchar1> , 0 /*kernelDownsampleX2_gpu<uchar2>*/ , kernelDownsampleX2_gpu<uchar3> , kernelDownsampleX2_gpu<uchar4> },
{0 /*kernelDownsampleX2_gpu<char1>*/ , 0 /*kernelDownsampleX2_gpu<char2>*/ , 0 /*kernelDownsampleX2_gpu<char3>*/ , 0 /*kernelDownsampleX2_gpu<char4>*/ },
{kernelDownsampleX2_gpu<ushort1> , 0 /*kernelDownsampleX2_gpu<ushort2>*/, kernelDownsampleX2_gpu<ushort3> , kernelDownsampleX2_gpu<ushort4> },
{0 /*kernelDownsampleX2_gpu<short1>*/ , 0 /*kernelDownsampleX2_gpu<short2>*/ , 0 /*kernelDownsampleX2_gpu<short3>*/, 0 /*kernelDownsampleX2_gpu<short4>*/},
{0 /*kernelDownsampleX2_gpu<int1>*/ , 0 /*kernelDownsampleX2_gpu<int2>*/ , 0 /*kernelDownsampleX2_gpu<int3>*/ , 0 /*kernelDownsampleX2_gpu<int4>*/ },
{kernelDownsampleX2_gpu<float1> , 0 /*kernelDownsampleX2_gpu<float2>*/ , kernelDownsampleX2_gpu<float3> , kernelDownsampleX2_gpu<float4> }
};
CV_Assert(img.depth() <= CV_32F && img.channels() <= 4);
const func_t func = funcs[img.depth()][img.channels() - 1];
CV_Assert(func != 0);
layer0_ = img;
Size szLastLayer = img.size();
nLayers_ = 1;
if (numLayers <= 0)
numLayers = 255; //it will cut-off when any of the dimensions goes 1
pyramid_.resize(numLayers);
for (int i = 0; i < numLayers - 1; ++i)
{
Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);
if (szCurLayer.width == 0 || szCurLayer.height == 0)
break;
ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
nLayers_++;
const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];
func(prevLayer, pyramid_[i], StreamAccessor::getStream(stream));
szLastLayer = szCurLayer;
}
}
void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream) const
{
using namespace cv::gpu::device::pyramid;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{kernelInterpolateFrom1_gpu<uchar1> , 0 /*kernelInterpolateFrom1_gpu<uchar2>*/ , kernelInterpolateFrom1_gpu<uchar3> , kernelInterpolateFrom1_gpu<uchar4> },
{0 /*kernelInterpolateFrom1_gpu<char1>*/ , 0 /*kernelInterpolateFrom1_gpu<char2>*/ , 0 /*kernelInterpolateFrom1_gpu<char3>*/ , 0 /*kernelInterpolateFrom1_gpu<char4>*/ },
{kernelInterpolateFrom1_gpu<ushort1> , 0 /*kernelInterpolateFrom1_gpu<ushort2>*/, kernelInterpolateFrom1_gpu<ushort3> , kernelInterpolateFrom1_gpu<ushort4> },
{0 /*kernelInterpolateFrom1_gpu<short1>*/, 0 /*kernelInterpolateFrom1_gpu<short2>*/ , 0 /*kernelInterpolateFrom1_gpu<short3>*/, 0 /*kernelInterpolateFrom1_gpu<short4>*/},
{0 /*kernelInterpolateFrom1_gpu<int1>*/ , 0 /*kernelInterpolateFrom1_gpu<int2>*/ , 0 /*kernelInterpolateFrom1_gpu<int3>*/ , 0 /*kernelInterpolateFrom1_gpu<int4>*/ },
{kernelInterpolateFrom1_gpu<float1> , 0 /*kernelInterpolateFrom1_gpu<float2>*/ , kernelInterpolateFrom1_gpu<float3> , kernelInterpolateFrom1_gpu<float4> }
};
CV_Assert(outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0);
ensureSizeIsEnough(outRoi, layer0_.type(), outImg);
const func_t func = funcs[outImg.depth()][outImg.channels() - 1];
CV_Assert(func != 0);
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
{
if (stream)
stream.enqueueCopy(layer0_, outImg);
else
layer0_.copyTo(outImg);
}
float lastScale = 1.0f;
float curScale;
GpuMat lastLayer = layer0_;
GpuMat curLayer;
for (int i = 0; i < nLayers_ - 1; ++i)
{
curScale = lastScale * 0.5f;
curLayer = pyramid_[i];
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
{
if (stream)
stream.enqueueCopy(curLayer, outImg);
else
curLayer.copyTo(outImg);
}
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
break;
lastScale = curScale;
lastLayer = curLayer;
}
func(lastLayer, outImg, StreamAccessor::getStream(stream));
}
#endif // HAVE_CUDA