opencv/modules/calib3d/src/blobdetector.cpp

288 lines
9.1 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "blobdetector.hpp"
using namespace cv;
BlobDetectorParameters::BlobDetectorParameters()
{
thresholdStep = 10;
minThreshold = 50;
maxThreshold = 220;
maxCentersDist = 10;
defaultKeypointSize = 1;
minRepeatability = 2;
filterByColor = true;
computeRadius = true;
isGrayscaleCentroid = false;
centroidROIMargin = 2;
filterByArea = true;
minArea = 25;
maxArea = 5000;
filterByInertia = true;
//minInertiaRatio = 0.6;
minInertiaRatio = 0.1;
filterByConvexity = true;
//minConvexity = 0.8;
minConvexity = 0.95;
filterByCircularity = false;
minCircularity = 0.8;
}
BlobDetector::BlobDetector(const BlobDetectorParameters &parameters) :
params(parameters)
{
}
2010-12-21 18:08:57 +08:00
void BlobDetector::detect(const cv::Mat& image, vector<cv::Point2f>& keypoints, const cv::Mat& mask) const
{
detectImpl(image, keypoints, mask);
}
Point2d BlobDetector::computeGrayscaleCentroid(const Mat &image, const vector<Point> &contour) const
{
Rect rect = boundingRect(Mat(contour));
rect.x -= params.centroidROIMargin;
rect.y -= params.centroidROIMargin;
rect.width += 2 * params.centroidROIMargin;
rect.height += 2 * params.centroidROIMargin;
rect.x = rect.x < 0 ? 0 : rect.x;
rect.y = rect.y < 0 ? 0 : rect.y;
rect.width = rect.x + rect.width < image.cols ? rect.width : image.cols - rect.x;
rect.height = rect.y + rect.height < image.rows ? rect.height : image.rows - rect.y;
Mat roi = image(rect);
assert( roi.type() == CV_8UC1 );
Mat invRoi = 255 - roi;
invRoi.convertTo(invRoi, CV_32FC1);
invRoi = invRoi.mul(invRoi);
Moments moms = moments(invRoi);
Point2d tl = rect.tl();
Point2d roiCentroid(moms.m10 / moms.m00, moms.m01 / moms.m00);
Point2d centroid = tl + roiCentroid;
return centroid;
}
void BlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, vector<Center> &centers) const
{
centers.clear();
vector<vector<Point> > contours;
Mat tmpBinaryImage = binaryImage.clone();
findContours(tmpBinaryImage, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
//Mat keypointsImage;
//cvtColor( binaryImage, keypointsImage, CV_GRAY2RGB );
//Mat contoursImage;
//cvtColor( binaryImage, contoursImage, CV_GRAY2RGB );
//drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
//imshow("contours", contoursImage );
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
{
Center center;
center.confidence = 1;
Moments moms = moments(Mat(contours[contourIdx]));
if (params.filterByArea)
{
double area = moms.m00;
if (area < params.minArea || area > params.maxArea)
continue;
}
if (params.filterByCircularity)
{
double area = moms.m00;
double perimeter = arcLength(Mat(contours[contourIdx]), true);
double ratio = 4 * M_PI * area / (perimeter * perimeter);
if (ratio < params.minCircularity)
continue;
}
if (params.filterByInertia)
{
double denominator = sqrt(pow(2 * moms.mu11, 2) + pow(moms.mu20 - moms.mu02, 2));
const double eps = 1e-2;
double ratio;
if (denominator > eps)
{
double cosmin = (moms.mu20 - moms.mu02) / denominator;
double sinmin = 2 * moms.mu11 / denominator;
double cosmax = -cosmin;
double sinmax = -sinmin;
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
ratio = imin / imax;
}
else
{
ratio = 1;
}
if (ratio < params.minInertiaRatio)
continue;
center.confidence = ratio * ratio;
}
if (params.filterByConvexity)
{
vector<Point> hull;
convexHull(Mat(contours[contourIdx]), hull);
double area = contourArea(Mat(contours[contourIdx]));
double hullArea = contourArea(Mat(hull));
double ratio = area / hullArea;
if (ratio < params.minConvexity)
continue;
}
if (params.isGrayscaleCentroid)
center.location = computeGrayscaleCentroid(image, contours[contourIdx]);
else
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
if (params.filterByColor)
{
if (binaryImage.at<uchar> (center.location.y, center.location.x) == 255)
continue;
}
if (params.computeRadius)
{
vector<double> dists;
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
{
Point2d pt = contours[contourIdx][pointIdx];
dists.push_back(norm(center.location - pt));
}
std::sort(dists.begin(), dists.end());
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
}
centers.push_back(center);
//circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
}
//imshow("bk", keypointsImage );
//waitKey();
}
2010-12-21 18:08:57 +08:00
void BlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::Point2f>& keypoints, const cv::Mat& mask) const
{
keypoints.clear();
Mat grayscaleImage;
if (image.channels() == 3)
cvtColor(image, grayscaleImage, CV_BGR2GRAY);
else
grayscaleImage = image;
vector<vector<Center> > centers;
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
{
Mat binarizedImage;
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
//Mat keypointsImage;
//cvtColor( binarizedImage, keypointsImage, CV_GRAY2RGB );
vector<Center> curCenters;
findBlobs(grayscaleImage, binarizedImage, curCenters);
for (size_t i = 0; i < curCenters.size(); i++)
{
//circle(keypointsImage, curCenters[i].location, 1, Scalar(0,0,255),-1);
bool isNew = true;
for (size_t j = 0; j < centers.size(); j++)
{
double dist = norm(centers[j][0].location - curCenters[i].location);
if (params.computeRadius)
isNew = dist >= centers[j][0].radius && dist >= curCenters[i].radius && dist >= params.maxCentersDist;
else
isNew = dist >= params.maxCentersDist;
if (!isNew)
{
centers[j].push_back(curCenters[i]);
// if( centers[j][0].radius < centers[j][ centers[j].size()-1 ].radius )
// {
// std::swap( centers[j][0], centers[j][ centers[j].size()-1 ] );
// }
break;
}
}
if (isNew)
{
centers.push_back(vector<Center> (1, curCenters[i]));
}
}
//imshow("binarized", keypointsImage );
//waitKey();
}
for (size_t i = 0; i < centers.size(); i++)
{
if (centers[i].size() < params.minRepeatability)
continue;
Point2d sumPoint(0, 0);
double normalizer = 0;
for (size_t j = 0; j < centers[i].size(); j++)
{
sumPoint += centers[i][j].confidence * centers[i][j].location;
normalizer += centers[i][j].confidence;
}
sumPoint *= (1. / normalizer);
2010-12-21 18:08:57 +08:00
keypoints.push_back(sumPoint);
}
}