mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
208 lines
5.8 KiB
C++
208 lines
5.8 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifdef ENABLE_TORCH_IMPORTER
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include "npy_blob.hpp"
|
||
|
#include <opencv2/dnn/shape_utils.hpp>
|
||
|
|
||
|
namespace cvtest
|
||
|
{
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace testing;
|
||
|
using namespace cv;
|
||
|
using namespace cv::dnn;
|
||
|
|
||
|
template<typename TStr>
|
||
|
static std::string _tf(TStr filename, bool inTorchDir = true)
|
||
|
{
|
||
|
String path = getOpenCVExtraDir() + "/dnn/";
|
||
|
if (inTorchDir)
|
||
|
path += "torch/";
|
||
|
path += filename;
|
||
|
return path;
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, simple_read)
|
||
|
{
|
||
|
Net net;
|
||
|
Ptr<Importer> importer;
|
||
|
|
||
|
ASSERT_NO_THROW( importer = createTorchImporter(_tf("net_simple_net.txt"), false) );
|
||
|
ASSERT_TRUE( importer != NULL );
|
||
|
importer->populateNet(net);
|
||
|
}
|
||
|
|
||
|
static void runTorchNet(String prefix, String outLayerName = "",
|
||
|
bool check2ndBlob = false, bool isBinary = false)
|
||
|
{
|
||
|
String suffix = (isBinary) ? ".dat" : ".txt";
|
||
|
|
||
|
Net net;
|
||
|
Ptr<Importer> importer = createTorchImporter(_tf(prefix + "_net" + suffix), isBinary);
|
||
|
ASSERT_TRUE(importer != NULL);
|
||
|
importer->populateNet(net);
|
||
|
|
||
|
Mat inp, outRef;
|
||
|
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
|
||
|
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
|
||
|
|
||
|
if (outLayerName.empty())
|
||
|
outLayerName = net.getLayerNames().back();
|
||
|
|
||
|
net.setInput(inp, "0");
|
||
|
std::vector<Mat> outBlobs;
|
||
|
net.forward(outBlobs, outLayerName);
|
||
|
normAssert(outRef, outBlobs[0]);
|
||
|
|
||
|
if (check2ndBlob)
|
||
|
{
|
||
|
Mat out2 = outBlobs[1];
|
||
|
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
|
||
|
normAssert(out2, ref2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_convolution)
|
||
|
{
|
||
|
runTorchNet("net_conv");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_pool_max)
|
||
|
{
|
||
|
runTorchNet("net_pool_max", "", true);
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_pool_ave)
|
||
|
{
|
||
|
runTorchNet("net_pool_ave");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_reshape)
|
||
|
{
|
||
|
runTorchNet("net_reshape");
|
||
|
runTorchNet("net_reshape_batch");
|
||
|
runTorchNet("net_reshape_single_sample");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_linear)
|
||
|
{
|
||
|
runTorchNet("net_linear_2d");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_paralel)
|
||
|
{
|
||
|
runTorchNet("net_parallel", "l5_torchMerge");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_concat)
|
||
|
{
|
||
|
runTorchNet("net_concat", "l5_torchMerge");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_deconv)
|
||
|
{
|
||
|
runTorchNet("net_deconv");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, run_batch_norm)
|
||
|
{
|
||
|
runTorchNet("net_batch_norm");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, net_prelu)
|
||
|
{
|
||
|
runTorchNet("net_prelu");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, net_cadd_table)
|
||
|
{
|
||
|
runTorchNet("net_cadd_table");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, net_softmax)
|
||
|
{
|
||
|
runTorchNet("net_softmax");
|
||
|
runTorchNet("net_softmax_spatial");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, net_logsoftmax)
|
||
|
{
|
||
|
runTorchNet("net_logsoftmax");
|
||
|
runTorchNet("net_logsoftmax_spatial");
|
||
|
}
|
||
|
|
||
|
TEST(Torch_Importer, ENet_accuracy)
|
||
|
{
|
||
|
Net net;
|
||
|
{
|
||
|
const string model = findDataFile("dnn/Enet-model-best.net", false);
|
||
|
Ptr<Importer> importer = createTorchImporter(model, true);
|
||
|
ASSERT_TRUE(importer != NULL);
|
||
|
importer->populateNet(net);
|
||
|
}
|
||
|
|
||
|
Mat sample = imread(_tf("street.png", false));
|
||
|
Mat inputBlob = blobFromImage(sample, 1./255);
|
||
|
|
||
|
net.setInput(inputBlob, "");
|
||
|
Mat out = net.forward();
|
||
|
Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
|
||
|
// Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
|
||
|
// thresholds for ENet must be changed. Accuracy of resuults was checked on
|
||
|
// Cityscapes dataset and difference in mIOU with Torch is 10E-4%
|
||
|
normAssert(ref, out, "", 0.00044, 0.44);
|
||
|
|
||
|
const int N = 3;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
net.setInput(inputBlob, "");
|
||
|
Mat out = net.forward();
|
||
|
normAssert(ref, out, "", 0.00044, 0.44);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif
|