mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 16:35:09 +08:00
150 lines
5.1 KiB
C++
150 lines
5.1 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
namespace cv {
|
||
|
DynamicDetector::DynamicDetector(int min_features,
|
||
|
int max_features, int max_iters, const Ptr<AdjusterAdapter>& a) :
|
||
|
escape_iters_(max_iters), min_features_(min_features), max_features_(
|
||
|
max_features), adjuster_(a) {
|
||
|
}
|
||
|
void DynamicDetector::detectImpl(const cv::Mat& image, std::vector<
|
||
|
cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||
|
//for oscillation testing
|
||
|
bool down = false;
|
||
|
bool up = false;
|
||
|
|
||
|
//flag for whether the correct threshhold has been reached
|
||
|
bool thresh_good = false;
|
||
|
|
||
|
//this is bad but adjuster should persist from detection to detection
|
||
|
AdjusterAdapter& adjuster = const_cast<AdjusterAdapter&> (*adjuster_);
|
||
|
|
||
|
//break if the desired number hasn't been reached.
|
||
|
int iter_count = escape_iters_;
|
||
|
|
||
|
do {
|
||
|
keypoints.clear();
|
||
|
|
||
|
//the adjuster takes care of calling the detector with updated parameters
|
||
|
adjuster.detect(image, keypoints,mask);
|
||
|
|
||
|
if (int(keypoints.size()) < min_features_) {
|
||
|
down = true;
|
||
|
adjuster.tooFew(min_features_, keypoints.size());
|
||
|
} else if (int(keypoints.size()) > max_features_) {
|
||
|
up = true;
|
||
|
adjuster.tooMany(max_features_, keypoints.size());
|
||
|
} else
|
||
|
thresh_good = true;
|
||
|
} while (--iter_count >= 0 && !(down && up) && !thresh_good
|
||
|
&& adjuster.good());
|
||
|
}
|
||
|
|
||
|
FastAdjuster::FastAdjuster(int init_thresh, bool nonmax) :
|
||
|
thresh_(init_thresh), nonmax_(nonmax) {
|
||
|
}
|
||
|
void FastAdjuster::detectImpl(const cv::Mat& image,
|
||
|
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||
|
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask);
|
||
|
}
|
||
|
void FastAdjuster::tooFew(int min, int n_detected) {
|
||
|
//fast is easy to adjust
|
||
|
thresh_--;
|
||
|
}
|
||
|
void FastAdjuster::tooMany(int max, int n_detected) {
|
||
|
//fast is easy to adjust
|
||
|
thresh_++;
|
||
|
}
|
||
|
|
||
|
//return whether or not the threshhold is beyond
|
||
|
//a useful point
|
||
|
bool FastAdjuster::good() const {
|
||
|
return (thresh_ > 1) && (thresh_ < 200);
|
||
|
}
|
||
|
|
||
|
StarAdjuster::StarAdjuster(double initial_thresh) :
|
||
|
thresh_(initial_thresh) {
|
||
|
}
|
||
|
void StarAdjuster::detectImpl(const cv::Mat& image,
|
||
|
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||
|
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
|
||
|
detector_tmp.detect(image, keypoints, mask);
|
||
|
}
|
||
|
void StarAdjuster::tooFew(int min, int n_detected) {
|
||
|
thresh_ *= 0.9;
|
||
|
if (thresh_ < 1.1)
|
||
|
thresh_ = 1.1;
|
||
|
}
|
||
|
void StarAdjuster::tooMany(int max, int n_detected) {
|
||
|
thresh_ *= 1.1;
|
||
|
}
|
||
|
|
||
|
bool StarAdjuster::good() const {
|
||
|
return (thresh_ > 2) && (thresh_ < 200);
|
||
|
}
|
||
|
|
||
|
SurfAdjuster::SurfAdjuster() :
|
||
|
thresh_(400.0) {
|
||
|
}
|
||
|
void SurfAdjuster::detectImpl(const cv::Mat& image,
|
||
|
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
|
||
|
SurfFeatureDetector detector_tmp(thresh_);
|
||
|
detector_tmp.detect(image, keypoints, mask);
|
||
|
}
|
||
|
void SurfAdjuster::tooFew(int min, int n_detected) {
|
||
|
thresh_ *= 0.9;
|
||
|
if (thresh_ < 1.1)
|
||
|
thresh_ = 1.1;
|
||
|
}
|
||
|
void SurfAdjuster::tooMany(int max, int n_detected) {
|
||
|
thresh_ *= 1.1;
|
||
|
}
|
||
|
|
||
|
//return whether or not the threshhold is beyond
|
||
|
//a useful point
|
||
|
bool SurfAdjuster::good() const {
|
||
|
return (thresh_ > 2) && (thresh_ < 1000);
|
||
|
}
|
||
|
|
||
|
}
|