opencv/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp

108 lines
3.1 KiB
C++
Raw Normal View History

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
/** Function Headers */
void detectAndDisplay( Mat frame );
/** Global variables */
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
/** @function main */
2017-01-19 17:17:53 +08:00
int main( int argc, const char** argv )
{
2017-01-19 17:17:53 +08:00
CommandLineParser parser(argc, argv,
"{help h||}"
"{face_cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|Path to face cascade.}"
"{eyes_cascade|../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|Path to eyes cascade.}"
"{camera|0|Camera device number.}");
2017-01-19 17:17:53 +08:00
parser.about( "\nThis program demonstrates using the cv::CascadeClassifier class to detect objects (Face + eyes) in a video stream.\n"
"You can use Haar or LBP features.\n\n" );
2017-01-19 17:17:53 +08:00
parser.printMessage();
String face_cascade_name = parser.get<String>("face_cascade");
String eyes_cascade_name = parser.get<String>("eyes_cascade");
//-- 1. Load the cascades
if( !face_cascade.load( face_cascade_name ) )
{
cout << "--(!)Error loading face cascade\n";
return -1;
};
if( !eyes_cascade.load( eyes_cascade_name ) )
{
cout << "--(!)Error loading eyes cascade\n";
return -1;
};
2012-10-17 07:18:30 +08:00
int camera_device = parser.get<int>("camera");
VideoCapture capture;
//-- 2. Read the video stream
capture.open( camera_device );
if ( ! capture.isOpened() )
{
cout << "--(!)Error opening video capture\n";
return -1;
}
2012-10-17 07:18:30 +08:00
Mat frame;
while ( capture.read(frame) )
{
if( frame.empty() )
{
cout << "--(!) No captured frame -- Break!\n";
break;
}
//-- 3. Apply the classifier to the frame
detectAndDisplay( frame );
if( waitKey(10) == 27 )
{
break; // escape
}
}
return 0;
}
/** @function detectAndDisplay */
void detectAndDisplay( Mat frame )
{
Mat frame_gray;
cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect faces
std::vector<Rect> faces;
face_cascade.detectMultiScale( frame_gray, faces );
for ( size_t i = 0; i < faces.size(); i++ )
{
Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2 ), 0, 0, 360, Scalar( 255, 0, 255 ), 4 );
Mat faceROI = frame_gray( faces[i] );
//-- In each face, detect eyes
std::vector<Rect> eyes;
eyes_cascade.detectMultiScale( faceROI, eyes );
for ( size_t j = 0; j < eyes.size(); j++ )
{
Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4 );
}
2012-10-17 07:18:30 +08:00
}
//-- Show what you got
imshow( "Capture - Face detection", frame );
}