2022-02-17 05:55:56 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
namespace dnn {
|
|
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
|
2023-04-22 00:10:17 +08:00
|
|
|
Image2BlobParams::Image2BlobParams():scalefactor(Scalar::all(1.0)), size(Size()), mean(Scalar()), swapRB(false), ddepth(CV_32F),
|
|
|
|
datalayout(DNN_LAYOUT_NCHW), paddingmode(DNN_PMODE_NULL)
|
|
|
|
{}
|
2022-02-17 05:55:56 +08:00
|
|
|
|
2023-04-22 00:10:17 +08:00
|
|
|
Image2BlobParams::Image2BlobParams(const Scalar& scalefactor_, const Size& size_, const Scalar& mean_, bool swapRB_,
|
|
|
|
int ddepth_, DataLayout datalayout_, ImagePaddingMode mode_):
|
|
|
|
scalefactor(scalefactor_), size(size_), mean(mean_), swapRB(swapRB_), ddepth(ddepth_),
|
|
|
|
datalayout(datalayout_), paddingmode(mode_)
|
|
|
|
{}
|
|
|
|
|
|
|
|
Mat blobFromImage(InputArray image, const double scalefactor, const Size& size,
|
2022-02-17 05:55:56 +08:00
|
|
|
const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Mat blob;
|
|
|
|
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
|
|
return blob;
|
|
|
|
}
|
|
|
|
|
|
|
|
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
|
|
|
|
const Size& size, const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
std::vector<Mat> images(1, image.getMat());
|
|
|
|
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
|
|
|
|
const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Mat blob;
|
|
|
|
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
|
|
return blob;
|
|
|
|
}
|
|
|
|
|
|
|
|
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
|
|
|
|
Size size, const Scalar& mean_, bool swapRB, bool crop, int ddepth)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
2023-04-22 00:10:17 +08:00
|
|
|
Image2BlobParams param(Scalar::all(scalefactor), size, mean_, swapRB, ddepth);
|
|
|
|
if (crop)
|
|
|
|
param.paddingmode = DNN_PMODE_CROP_CENTER;
|
|
|
|
blobFromImagesWithParams(images_, blob_, param);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat blobFromImageWithParams(InputArray image, const Image2BlobParams& param)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Mat blob;
|
|
|
|
blobFromImageWithParams(image, blob, param);
|
|
|
|
return blob;
|
|
|
|
}
|
|
|
|
|
|
|
|
void blobFromImageWithParams(InputArray image, OutputArray blob, const Image2BlobParams& param)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
std::vector<Mat> images(1, image.getMat());
|
|
|
|
blobFromImagesWithParams(images, blob, param);
|
|
|
|
}
|
2022-02-17 05:55:56 +08:00
|
|
|
|
2023-04-22 00:10:17 +08:00
|
|
|
Mat blobFromImagesWithParams(InputArrayOfArrays images, const Image2BlobParams& param)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Mat blob;
|
|
|
|
blobFromImagesWithParams(images, blob, param);
|
|
|
|
return blob;
|
|
|
|
}
|
|
|
|
|
|
|
|
void blobFromImagesWithParams(InputArrayOfArrays images_, OutputArray blob_, const Image2BlobParams& param)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_CheckType(param.ddepth, param.ddepth == CV_32F || param.ddepth == CV_8U,
|
|
|
|
"Blob depth should be CV_32F or CV_8U");
|
|
|
|
|
|
|
|
Size size = param.size;
|
2022-02-17 05:55:56 +08:00
|
|
|
std::vector<Mat> images;
|
|
|
|
images_.getMatVector(images);
|
|
|
|
CV_Assert(!images.empty());
|
2023-04-22 00:10:17 +08:00
|
|
|
|
|
|
|
int nch = images[0].channels();
|
|
|
|
Scalar scalefactor = param.scalefactor;
|
|
|
|
|
|
|
|
if (param.ddepth == CV_8U)
|
|
|
|
{
|
|
|
|
CV_Assert(scalefactor == Scalar::all(1.0) && "Scaling is not supported for CV_8U blob depth");
|
|
|
|
CV_Assert(param.mean == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
|
|
|
|
}
|
|
|
|
|
2022-02-17 05:55:56 +08:00
|
|
|
for (size_t i = 0; i < images.size(); i++)
|
|
|
|
{
|
|
|
|
Size imgSize = images[i].size();
|
|
|
|
if (size == Size())
|
|
|
|
size = imgSize;
|
|
|
|
if (size != imgSize)
|
|
|
|
{
|
2023-04-22 00:10:17 +08:00
|
|
|
if (param.paddingmode == DNN_PMODE_CROP_CENTER)
|
2022-02-17 05:55:56 +08:00
|
|
|
{
|
|
|
|
float resizeFactor = std::max(size.width / (float)imgSize.width,
|
2023-04-22 00:10:17 +08:00
|
|
|
size.height / (float)imgSize.height);
|
2022-02-17 05:55:56 +08:00
|
|
|
resize(images[i], images[i], Size(), resizeFactor, resizeFactor, INTER_LINEAR);
|
|
|
|
Rect crop(Point(0.5 * (images[i].cols - size.width),
|
2023-04-22 00:10:17 +08:00
|
|
|
0.5 * (images[i].rows - size.height)),
|
|
|
|
size);
|
2022-02-17 05:55:56 +08:00
|
|
|
images[i] = images[i](crop);
|
|
|
|
}
|
|
|
|
else
|
2023-04-22 00:10:17 +08:00
|
|
|
{
|
|
|
|
if (param.paddingmode == DNN_PMODE_LETTERBOX)
|
|
|
|
{
|
|
|
|
float resizeFactor = std::min(size.width / (float)imgSize.width,
|
|
|
|
size.height / (float)imgSize.height);
|
|
|
|
int rh = int(imgSize.height * resizeFactor);
|
|
|
|
int rw = int(imgSize.width * resizeFactor);
|
|
|
|
resize(images[i], images[i], Size(rw, rh), INTER_LINEAR);
|
|
|
|
|
|
|
|
int top = (size.height - rh)/2;
|
|
|
|
int bottom = size.height - top - rh;
|
|
|
|
int left = (size.width - rw)/2;
|
|
|
|
int right = size.width - left - rw;
|
|
|
|
copyMakeBorder(images[i], images[i], top, bottom, left, right, BORDER_CONSTANT);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
|
|
|
|
}
|
2022-02-17 05:55:56 +08:00
|
|
|
}
|
2023-04-22 00:10:17 +08:00
|
|
|
|
|
|
|
Scalar mean = param.mean;
|
|
|
|
if (param.swapRB)
|
|
|
|
{
|
2022-02-17 05:55:56 +08:00
|
|
|
std::swap(mean[0], mean[2]);
|
2023-04-22 00:10:17 +08:00
|
|
|
std::swap(scalefactor[0], scalefactor[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (images[i].depth() == CV_8U && param.ddepth == CV_32F)
|
|
|
|
images[i].convertTo(images[i], CV_32F);
|
2022-02-17 05:55:56 +08:00
|
|
|
|
|
|
|
images[i] -= mean;
|
2023-04-22 00:10:17 +08:00
|
|
|
multiply(images[i], scalefactor, images[i]);
|
2022-02-17 05:55:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
size_t nimages = images.size();
|
|
|
|
Mat image0 = images[0];
|
|
|
|
CV_Assert(image0.dims == 2);
|
2023-04-22 00:10:17 +08:00
|
|
|
|
|
|
|
if (param.datalayout == DNN_LAYOUT_NCHW)
|
2022-02-17 05:55:56 +08:00
|
|
|
{
|
2023-04-22 00:10:17 +08:00
|
|
|
if (nch == 3 || nch == 4)
|
|
|
|
{
|
|
|
|
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
|
|
|
|
blob_.create(4, sz, param.ddepth);
|
|
|
|
Mat blob = blob_.getMat();
|
|
|
|
Mat ch[4];
|
2022-02-17 05:55:56 +08:00
|
|
|
|
2023-04-22 00:10:17 +08:00
|
|
|
for (size_t i = 0; i < nimages; i++)
|
|
|
|
{
|
|
|
|
const Mat& image = images[i];
|
|
|
|
CV_Assert(image.depth() == blob_.depth());
|
|
|
|
nch = image.channels();
|
|
|
|
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
|
|
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
|
|
|
|
for (int j = 0; j < nch; j++)
|
|
|
|
ch[j] = Mat(image.rows, image.cols, param.ddepth, blob.ptr((int)i, j));
|
|
|
|
if (param.swapRB)
|
|
|
|
std::swap(ch[0], ch[2]);
|
|
|
|
split(image, ch);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
2022-02-17 05:55:56 +08:00
|
|
|
{
|
2023-04-22 00:10:17 +08:00
|
|
|
CV_Assert(nch == 1);
|
|
|
|
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
|
|
|
|
blob_.create(4, sz, param.ddepth);
|
|
|
|
Mat blob = blob_.getMat();
|
2022-02-17 05:55:56 +08:00
|
|
|
|
2023-04-22 00:10:17 +08:00
|
|
|
for (size_t i = 0; i < nimages; i++)
|
|
|
|
{
|
|
|
|
const Mat& image = images[i];
|
|
|
|
CV_Assert(image.depth() == blob_.depth());
|
|
|
|
nch = image.channels();
|
|
|
|
CV_Assert(image.dims == 2 && (nch == 1));
|
|
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
|
|
|
|
image.copyTo(Mat(image.rows, image.cols, param.ddepth, blob.ptr((int)i, 0)));
|
|
|
|
}
|
2022-02-17 05:55:56 +08:00
|
|
|
}
|
|
|
|
}
|
2023-04-22 00:10:17 +08:00
|
|
|
else if (param.datalayout == DNN_LAYOUT_NHWC)
|
2022-02-17 05:55:56 +08:00
|
|
|
{
|
2023-04-22 00:10:17 +08:00
|
|
|
int sz[] = { (int)nimages, image0.rows, image0.cols, nch};
|
|
|
|
blob_.create(4, sz, param.ddepth);
|
2022-02-17 05:55:56 +08:00
|
|
|
Mat blob = blob_.getMat();
|
2023-04-22 00:10:17 +08:00
|
|
|
int subMatType = CV_MAKETYPE(param.ddepth, nch);
|
2022-02-17 05:55:56 +08:00
|
|
|
for (size_t i = 0; i < nimages; i++)
|
|
|
|
{
|
|
|
|
const Mat& image = images[i];
|
|
|
|
CV_Assert(image.depth() == blob_.depth());
|
2023-04-22 00:10:17 +08:00
|
|
|
CV_Assert(image.channels() == image0.channels());
|
2022-02-17 05:55:56 +08:00
|
|
|
CV_Assert(image.size() == image0.size());
|
2023-04-22 00:10:17 +08:00
|
|
|
if (param.swapRB)
|
|
|
|
{
|
|
|
|
Mat tmpRB;
|
|
|
|
cvtColor(image, tmpRB, COLOR_BGR2RGB);
|
|
|
|
tmpRB.copyTo(Mat(tmpRB.rows, tmpRB.cols, subMatType, blob.ptr((int)i, 0)));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
image.copyTo(Mat(image.rows, image.cols, subMatType, blob.ptr((int)i, 0)));
|
2022-02-17 05:55:56 +08:00
|
|
|
}
|
|
|
|
}
|
2023-04-22 00:10:17 +08:00
|
|
|
else
|
|
|
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported data layout in blobFromImagesWithParams function.");
|
2022-02-17 05:55:56 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
|
|
|
|
// A blob is a 4 dimensional matrix in floating point precision
|
|
|
|
// blob_[0] = batchSize = nbOfImages
|
|
|
|
// blob_[1] = nbOfChannels
|
|
|
|
// blob_[2] = height
|
|
|
|
// blob_[3] = width
|
|
|
|
CV_Assert(blob_.depth() == CV_32F);
|
|
|
|
CV_Assert(blob_.dims == 4);
|
|
|
|
|
|
|
|
images_.create(cv::Size(1, blob_.size[0]), blob_.depth());
|
|
|
|
|
|
|
|
std::vector<Mat> vectorOfChannels(blob_.size[1]);
|
|
|
|
for (int n = 0; n < blob_.size[0]; ++n)
|
|
|
|
{
|
|
|
|
for (int c = 0; c < blob_.size[1]; ++c)
|
|
|
|
{
|
|
|
|
vectorOfChannels[c] = getPlane(blob_, n, c);
|
|
|
|
}
|
|
|
|
cv::merge(vectorOfChannels, images_.getMatRef(n));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
|
|
}} // namespace cv::dnn
|