mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:00:37 +08:00
3206 lines
99 KiB
C++
3206 lines
99 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include "opencv2/flann.hpp"
|
||
|
#include "chessboard.hpp"
|
||
|
#include "math.h"
|
||
|
|
||
|
//#define CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
cv::Mat debug_image;
|
||
|
#endif
|
||
|
|
||
|
using namespace std;
|
||
|
namespace cv {
|
||
|
namespace details {
|
||
|
|
||
|
/////////////////////////////////////////////////////////////////////////////
|
||
|
/////////////////////////////////////////////////////////////////////////////
|
||
|
// magic numbers used for chessboard corner detection
|
||
|
/////////////////////////////////////////////////////////////////////////////
|
||
|
const float CORNERS_SEARCH = 0.5F; // percentage of the edge length to the next corner used to find new corners
|
||
|
const float MAX_ANGLE = float(48.0/180.0*M_PI); // max angle between line segments supposed to be straight
|
||
|
const float MIN_COS_ANGLE = float(cos(35.0/180*M_PI)); // min cos angle between board edges
|
||
|
const float MIN_RESPONSE_RATIO = 0.3F;
|
||
|
const float ELLIPSE_WIDTH = 0.35F; // width of the search ellipse in percentage of its length
|
||
|
const float RAD2DEG = float(180.0/M_PI);
|
||
|
const int MAX_SYMMETRY_ERRORS = 5; // maximal number of failures during point symmetry test (filtering out lines)
|
||
|
/////////////////////////////////////////////////////////////////////////////
|
||
|
/////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
// some helper methods
|
||
|
static bool isPointOnLine(cv::Point2f l1,cv::Point2f l2,cv::Point2f pt,float min_angle);
|
||
|
static int testPointSymmetry(cv::Mat mat,cv::Point2f pt,float dist,float max_error);
|
||
|
static float calcSubpixel(const float &x_l,const float &x,const float &x_r);
|
||
|
static float calcSubPos(const float &x_l,const float &x,const float &x_r);
|
||
|
static void polyfit(const Mat& src_x, const Mat& src_y, Mat& dst, int order);
|
||
|
static float calcSignedDistance(const cv::Vec2f &n,const cv::Point2f &a,const cv::Point2f &pt);
|
||
|
static void normalizePoints1D(cv::InputArray _points,cv::OutputArray _T,cv::OutputArray _new_points);
|
||
|
static cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst);
|
||
|
|
||
|
void normalizePoints1D(cv::InputArray _points,cv::OutputArray _T,cv::OutputArray _new_points)
|
||
|
{
|
||
|
cv::Mat points = _points.getMat();
|
||
|
if(points.cols > 1 && points.rows == 1)
|
||
|
points = points.reshape(1,points.cols);
|
||
|
CV_CheckChannelsEQ(points.channels(), 1, "points must have only one channel");
|
||
|
|
||
|
// calc centroid
|
||
|
double centroid= cv::mean(points)[0];
|
||
|
|
||
|
// shift origin to centroid
|
||
|
cv::Mat new_points = points-centroid;
|
||
|
|
||
|
// calc mean distance
|
||
|
double mean_dist = cv::mean(cv::abs(new_points))[0];
|
||
|
if(mean_dist<= DBL_EPSILON)
|
||
|
CV_Error(Error::StsBadArg, "all given points are identical");
|
||
|
double scale = 1.0/mean_dist;
|
||
|
|
||
|
// generate transformation
|
||
|
_T.create(2,2,CV_64FC1);
|
||
|
cv::Mat T = _T.getMat();
|
||
|
T.at<double>(0,0) = scale;
|
||
|
T.at<double>(0,1) = -scale*centroid;
|
||
|
T.at<double>(1,0) = 0;
|
||
|
T.at<double>(1,1) = 1;
|
||
|
|
||
|
// calc normalized points;
|
||
|
cv::Matx22d Tx(T);
|
||
|
_new_points.create(points.rows,1,points.type());
|
||
|
new_points = _new_points.getMat();
|
||
|
cv::Vec2d p;
|
||
|
switch(points.type())
|
||
|
{
|
||
|
case CV_32FC1:
|
||
|
for(int i=0;i < points.rows;++i)
|
||
|
{
|
||
|
p(0) = points.at<float>(i);
|
||
|
p(1) = 1.0;
|
||
|
p = Tx*p;
|
||
|
new_points.at<float>(i) = float(p(0)/p(1));
|
||
|
}
|
||
|
break;
|
||
|
case CV_64FC1:
|
||
|
for(int i=0;i < points.rows;++i)
|
||
|
{
|
||
|
p(0) = points.at<double>(i);
|
||
|
p(1) = 1.0;
|
||
|
p = Tx*p;
|
||
|
new_points.at<double>(i) = p(0)/p(1);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
CV_Error(Error::StsUnsupportedFormat, "unsupported point type");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst)
|
||
|
{
|
||
|
// check inputs
|
||
|
cv::Mat src = _src.getMat();
|
||
|
cv::Mat dst = _dst.getMat();
|
||
|
if(src.cols > 1 && src.rows == 1)
|
||
|
src = src.reshape(1,src.cols);
|
||
|
if(dst.cols > 1 && dst.rows == 1)
|
||
|
dst = dst.reshape(1,dst.cols);
|
||
|
if(src.rows != dst.rows)
|
||
|
CV_Error(Error::StsBadArg, "size mismatch");
|
||
|
CV_CheckChannelsEQ(src.channels(), 1, "data with only one channel are supported");
|
||
|
CV_CheckChannelsEQ(dst.channels(), 1, "data with only one channel are supported");
|
||
|
CV_CheckTypeEQ(src.type(), dst.type(), "src and dst must have the same type");
|
||
|
CV_Check(src.rows, src.rows >= 3,"at least three point pairs are needed");
|
||
|
|
||
|
// normalize points
|
||
|
cv::Mat src_T,dst_T, src_n,dst_n;
|
||
|
normalizePoints1D(src,src_T,src_n);
|
||
|
normalizePoints1D(dst,dst_T,dst_n);
|
||
|
|
||
|
int count = src_n.rows;
|
||
|
cv::Mat A = cv::Mat::zeros(count,3,CV_64FC1);
|
||
|
cv::Mat b = cv::Mat::zeros(count,1,CV_64FC1);
|
||
|
|
||
|
// fill A;b and perform singular value decomposition
|
||
|
// it is assumed that w is one for both cooridnates
|
||
|
// h22 is kept to 1
|
||
|
switch(src_n.type())
|
||
|
{
|
||
|
case CV_32FC1:
|
||
|
for(int i=0;i<count;++i)
|
||
|
{
|
||
|
double s = src_n.at<float>(i);
|
||
|
double d = dst_n.at<float>(i);
|
||
|
A.at<double>(i,0) = s;
|
||
|
A.at<double>(i,1) = 1.0;
|
||
|
A.at<double>(i,2) = -s*d;
|
||
|
b.at<double>(i) = d;
|
||
|
}
|
||
|
break;
|
||
|
case CV_64FC1:
|
||
|
for(int i=0;i<count;++i)
|
||
|
{
|
||
|
double s = src_n.at<double>(i);
|
||
|
double d = dst_n.at<double>(i);
|
||
|
A.at<double>(i,0) = s;
|
||
|
A.at<double>(i,1) = 1.0;
|
||
|
A.at<double>(i,2) = -s*d;
|
||
|
b.at<double>(i) = d;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
CV_Error(Error::StsUnsupportedFormat,"unsupported type");
|
||
|
}
|
||
|
|
||
|
cv::Mat u,d,vt;
|
||
|
cv::SVD::compute(A,d,u,vt);
|
||
|
cv::Mat b_ = u.t()*b;
|
||
|
|
||
|
cv::Mat y(b_.rows,1,CV_64FC1);
|
||
|
for(int i=0;i<b_.rows;++i)
|
||
|
y.at<double>(i) = b_.at<double>(i)/d.at<double>(i);
|
||
|
|
||
|
cv::Mat x = vt.t()*y;
|
||
|
cv::Mat H = (cv::Mat_<double>(2,2) << x.at<double>(0), x.at<double>(1), x.at<double>(2), 1.0);
|
||
|
|
||
|
// denormalize
|
||
|
H = dst_T.inv()*H*src_T;
|
||
|
|
||
|
// enforce frobeniusnorm of one
|
||
|
double scale = 1.0/cv::norm(H);
|
||
|
return H*scale;
|
||
|
}
|
||
|
void polyfit(const Mat& src_x, const Mat& src_y, Mat& dst, int order)
|
||
|
{
|
||
|
int npoints = src_x.checkVector(1);
|
||
|
int nypoints = src_y.checkVector(1);
|
||
|
CV_Assert(npoints == nypoints && npoints >= order+1);
|
||
|
Mat srcX = Mat_<double>(src_x), srcY = Mat_<double>(src_y);
|
||
|
Mat A = Mat_<double>::ones(npoints,order + 1);
|
||
|
// build A matrix
|
||
|
for (int y = 0; y < npoints; ++y)
|
||
|
{
|
||
|
for (int x = 1; x < A.cols; ++x)
|
||
|
A.at<double>(y,x) = srcX.at<double>(y)*A.at<double>(y,x-1);
|
||
|
}
|
||
|
cv::Mat w;
|
||
|
solve(A,srcY,w,DECOMP_SVD);
|
||
|
w.convertTo(dst,std::max(std::max(src_x.depth(), src_y.depth()), CV_32F));
|
||
|
}
|
||
|
|
||
|
float calcSignedDistance(const cv::Vec2f &n,const cv::Point2f &a,const cv::Point2f &pt)
|
||
|
{
|
||
|
cv::Vec3f v1(n[0],n[1],0);
|
||
|
cv::Vec3f v2(pt.x-a.x,pt.y-a.y,0);
|
||
|
return v1.cross(v2)[2];
|
||
|
}
|
||
|
|
||
|
bool isPointOnLine(cv::Point2f l1,cv::Point2f l2,cv::Point2f pt,float min_angle)
|
||
|
{
|
||
|
cv::Vec2f vec1(l1-pt);
|
||
|
cv::Vec2f vec2(pt-l2);
|
||
|
if(vec1.dot(vec2) < min_angle*cv::norm(vec1)*cv::norm(vec2))
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// returns how many tests fails out of 10
|
||
|
int testPointSymmetry(cv::Mat mat,cv::Point2f pt,float dist,float max_error)
|
||
|
{
|
||
|
cv::Rect image_rect(int(0.5*dist),int(0.5*dist),int(mat.cols-0.5*dist),int(mat.rows-0.5*dist));
|
||
|
cv::Size size(int(0.5*dist),int(0.5*dist));
|
||
|
int count = 0;
|
||
|
cv::Mat patch1,patch2;
|
||
|
cv::Point2f center1,center2;
|
||
|
for(double angle=0;angle <= M_PI;angle+=M_PI*0.1)
|
||
|
{
|
||
|
cv::Point2f n(float(cos(angle)),float(-sin(angle)));
|
||
|
center1 = pt+dist*n;
|
||
|
if(!image_rect.contains(center1))
|
||
|
return false;
|
||
|
center2 = pt-dist*n;
|
||
|
if(!image_rect.contains(center2))
|
||
|
return false;
|
||
|
cv::getRectSubPix(mat,size,center1,patch1);
|
||
|
cv::getRectSubPix(mat,size,center2,patch2);
|
||
|
if(fabs(cv::mean(patch1)[0]-cv::mean(patch2)[0]) > max_error)
|
||
|
++count;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
float calcSubpixel(const float &x_l,const float &x,const float &x_r)
|
||
|
{
|
||
|
// prevent zero values
|
||
|
if(x_l <= 0)
|
||
|
return 0;
|
||
|
if(x <= 0)
|
||
|
return 0;
|
||
|
if(x_r <= 0)
|
||
|
return 0;
|
||
|
const float l0 = float(std::log(x_l+1e-6));
|
||
|
const float l1 = float(std::log(x+1e-6));
|
||
|
const float l2 = float(std::log(x_r+1e-6));
|
||
|
float delta = l2-l1-l1+l0;
|
||
|
if(!delta) // this happens if all values are identical
|
||
|
return 0;
|
||
|
delta = (l0-l2)/(delta+delta);
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
float calcSubPos(const float &x_l,const float &x,const float &x_r)
|
||
|
{
|
||
|
float val = 2.0F *(x_l-2.0F*x+x_r);
|
||
|
if(val == 0.0F)
|
||
|
return 0.0F;
|
||
|
val = (x_l-x_r)/val;
|
||
|
if(val > 1.0F)
|
||
|
return 1.0F;
|
||
|
if(val < -1.0F)
|
||
|
return -1.0F;
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
FastX::FastX(const Parameters ¶)
|
||
|
{
|
||
|
reconfigure(para);
|
||
|
}
|
||
|
|
||
|
void FastX::reconfigure(const Parameters ¶)
|
||
|
{
|
||
|
CV_Check(para.min_scale, para.min_scale >= 0 && para.min_scale <= para.max_scale, "invalid scale");
|
||
|
parameters = para;
|
||
|
}
|
||
|
|
||
|
// rotates the image around its center
|
||
|
void FastX::rotate(float angle,const cv::Mat &img,cv::Size size,cv::Mat &out)const
|
||
|
{
|
||
|
if(angle == 0)
|
||
|
{
|
||
|
out = img;
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::Mat m = cv::getRotationMatrix2D(cv::Point2f(float(img.cols*0.5),float(img.rows*0.5)),float(angle/M_PI*180),1);
|
||
|
CV_Assert(m.type() == CV_64FC1);
|
||
|
m.at<double>(0,2) += 0.5*(size.width-img.cols);
|
||
|
m.at<double>(1,2) += 0.5*(size.height-img.rows);
|
||
|
cv::warpAffine(img,out,m,size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FastX::calcFeatureMap(const Mat &images,Mat& out)const
|
||
|
{
|
||
|
if(images.empty())
|
||
|
CV_Error(Error::StsBadArg,"no rotation images");
|
||
|
int type = images.type(), depth = CV_MAT_DEPTH(type);
|
||
|
CV_CheckType(type,depth == CV_8U,
|
||
|
"Only 8-bit grayscale or color images are supported");
|
||
|
if(!images.isContinuous())
|
||
|
CV_Error(Error::StsBadArg,"image must be continuous");
|
||
|
|
||
|
float signal,noise,rating;
|
||
|
int count1;
|
||
|
unsigned char val1,val2,val3;
|
||
|
const unsigned char* wrap_around;
|
||
|
const unsigned char* pend;
|
||
|
const unsigned char* pimages = images.data;
|
||
|
const int channels = images.channels();
|
||
|
if(channels < 4)
|
||
|
CV_Error(Error::StsBadArg,"images must have at least four channels");
|
||
|
|
||
|
// for each pixel
|
||
|
out = cv::Mat::zeros(images.rows,images.cols,CV_32FC1);
|
||
|
const float *pout_end = reinterpret_cast<const float*>(out.dataend);
|
||
|
for(float *pout=out.ptr<float>(0,0);pout != pout_end;++pout)
|
||
|
{
|
||
|
//reset values
|
||
|
rating = 0.0; count1 = 0;
|
||
|
noise = 255; signal = 0;
|
||
|
|
||
|
//calc rating
|
||
|
pend = pimages+channels;
|
||
|
val1 = *(pend-1); // wrap around (last value)
|
||
|
wrap_around = pimages++; // store for wrap around (first value)
|
||
|
val2 = *wrap_around; // first value
|
||
|
for(;pimages != pend;++pimages)
|
||
|
{
|
||
|
val3 = *pimages;
|
||
|
if(val1 <= val2)
|
||
|
{
|
||
|
if(val3 < val2) // maxima
|
||
|
{
|
||
|
if(signal < val2)
|
||
|
signal = val2;
|
||
|
++count1;
|
||
|
}
|
||
|
}
|
||
|
else if(val1 > val2 && val3 >= val2) // minima
|
||
|
{
|
||
|
if(noise > val2)
|
||
|
noise = val2;
|
||
|
++count1;
|
||
|
}
|
||
|
val1 = val2;
|
||
|
val2 = val3;
|
||
|
}
|
||
|
// wrap around
|
||
|
if(val1 <= val2) // maxima
|
||
|
{
|
||
|
if(*wrap_around < val2)
|
||
|
{
|
||
|
if(signal < val2)
|
||
|
signal = val2;
|
||
|
++count1;
|
||
|
}
|
||
|
}
|
||
|
else if(val1 > val2 && *wrap_around >= val2) // minima
|
||
|
{
|
||
|
if(noise > val2)
|
||
|
noise = val2;
|
||
|
++count1;
|
||
|
}
|
||
|
|
||
|
// store rating
|
||
|
if(count1 == parameters.branches)
|
||
|
{
|
||
|
rating = signal-noise;
|
||
|
*pout = rating*rating; //store rating in the feature map
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<std::vector<float> > FastX::calcAngles(const std::vector<cv::Mat> &rotated_images,std::vector<cv::KeyPoint> &keypoints)const
|
||
|
{
|
||
|
// validate rotated_images
|
||
|
if(rotated_images.empty())
|
||
|
CV_Error(Error::StsBadArg,"no rotated images");
|
||
|
std::vector<cv::Mat>::const_iterator iter = rotated_images.begin();
|
||
|
for(;iter != rotated_images.end();++iter)
|
||
|
{
|
||
|
if(iter->empty())
|
||
|
CV_Error(Error::StsBadArg,"empty rotated images");
|
||
|
if(iter->channels() < 4)
|
||
|
CV_Error(Error::StsBadArg,"rotated images must have at least four channels");
|
||
|
}
|
||
|
|
||
|
// assuming all elements of the same channel
|
||
|
const int channels = rotated_images.front().channels();
|
||
|
int channels_1 = channels-1;
|
||
|
float resolution = float(M_PI/channels);
|
||
|
|
||
|
float angle;
|
||
|
float val1,val2,val3,wrap_around;
|
||
|
const unsigned char *pimages1,*pimages2,*pimages3,*pimages4;
|
||
|
std::vector<std::vector<float> > angles;
|
||
|
angles.resize(keypoints.size());
|
||
|
float scale = float(parameters.super_resolution)+1.0F;
|
||
|
|
||
|
// for each keypoint
|
||
|
std::vector<cv::KeyPoint>::iterator pt_iter = keypoints.begin();
|
||
|
for(int id=0;pt_iter != keypoints.end();++pt_iter,++id)
|
||
|
{
|
||
|
int scale_id = pt_iter->octave - parameters.min_scale;
|
||
|
if(scale_id>= int(rotated_images.size()) ||scale_id < 0)
|
||
|
CV_Error(Error::StsBadArg,"no rotated image for requested keypoint octave");
|
||
|
const cv::Mat &s_rotated_images = rotated_images[scale_id];
|
||
|
|
||
|
float x2 = pt_iter->pt.x*scale;
|
||
|
float y2 = pt_iter->pt.y*scale;
|
||
|
int row = int(y2);
|
||
|
int col = int(x2);
|
||
|
x2 -= col;
|
||
|
y2 -= row;
|
||
|
float x1 = 1.0F-x2; float y1 = 1.0F-y2;
|
||
|
float a = x1*y1; float b = x2*y1; float c = x1*y2; float d = x2*y2;
|
||
|
pimages1 = s_rotated_images.ptr<unsigned char>(row,col);
|
||
|
pimages2 = s_rotated_images.ptr<unsigned char>(row,col+1);
|
||
|
pimages3 = s_rotated_images.ptr<unsigned char>(row+1,col);
|
||
|
pimages4 = s_rotated_images.ptr<unsigned char>(row+1,col+1);
|
||
|
std::vector<float> &angles_i = angles[id];
|
||
|
|
||
|
//calc rating
|
||
|
val1 = a**(pimages1+channels_1)+b**(pimages2+channels_1)+
|
||
|
c**(pimages3+channels_1)+d**(pimages4+channels_1); // wrap around (last value)
|
||
|
wrap_around = a**(pimages1++)+b**(pimages2++)+c**(pimages3++)+d**(pimages4++); // first value
|
||
|
val2 = wrap_around; // first value
|
||
|
for(int i=0;i<channels-1;++pimages1,++pimages2,++pimages3,++pimages4,++i)
|
||
|
{
|
||
|
val3 = a**(pimages1)+b**(pimages2)+c**(pimages3)+d**(pimages4);
|
||
|
if(val1 <= val2)
|
||
|
{
|
||
|
if(val3 < val2)
|
||
|
{
|
||
|
angle = float((calcSubPos(val1,val2,val3)+i)*resolution);
|
||
|
if(angle < 0)
|
||
|
angle += float(M_PI);
|
||
|
else if(angle > M_PI)
|
||
|
angle -= float(M_PI);
|
||
|
angles_i.push_back(angle);
|
||
|
pt_iter->angle = 360.0F-angle*RAD2DEG;
|
||
|
}
|
||
|
}
|
||
|
else if(val1 > val2 && val3 >= val2)
|
||
|
{
|
||
|
angle = float((calcSubPos(val1,val2,val3)+i)*resolution);
|
||
|
if(angle < 0)
|
||
|
angle += float(M_PI);
|
||
|
else if(angle > M_PI)
|
||
|
angle -= float(M_PI);
|
||
|
angles_i.push_back(-angle);
|
||
|
pt_iter->angle = 360.0F-angle*RAD2DEG;
|
||
|
}
|
||
|
val1 = val2;
|
||
|
val2 = val3;
|
||
|
}
|
||
|
// wrap around
|
||
|
if(val1 <= val2)
|
||
|
{
|
||
|
if(wrap_around< val2)
|
||
|
{
|
||
|
angle = float((calcSubPos(val1,val2,wrap_around)+channels-1)*resolution);
|
||
|
if(angle < 0)
|
||
|
angle += float(M_PI);
|
||
|
else if(angle > M_PI)
|
||
|
angle -= float(M_PI);
|
||
|
angles_i.push_back(angle);
|
||
|
pt_iter->angle = 360.0F-angle*RAD2DEG;
|
||
|
}
|
||
|
}
|
||
|
else if(val1 > val2 && wrap_around >= val2)
|
||
|
{
|
||
|
angle = float((calcSubPos(val1,val2,wrap_around)+channels-1)*resolution);
|
||
|
if(angle < 0)
|
||
|
angle += float(M_PI);
|
||
|
else if(angle > M_PI)
|
||
|
angle -= float(M_PI);
|
||
|
angles_i.push_back(-angle);
|
||
|
pt_iter->angle = 360.0F-angle*RAD2DEG;
|
||
|
}
|
||
|
}
|
||
|
return angles;
|
||
|
}
|
||
|
|
||
|
void FastX::findKeyPoints(const std::vector<cv::Mat> &feature_maps, std::vector<KeyPoint>& keypoints,const Mat& _mask) const
|
||
|
{
|
||
|
//TODO check that all feature_maps have the same size
|
||
|
int num_scales = parameters.max_scale-parameters.min_scale;
|
||
|
if(int(feature_maps.size()) < num_scales)
|
||
|
CV_Error(Error::StsBadArg,"missing feature maps");
|
||
|
if(_mask.data && (_mask.type() != CV_8UC1 || _mask.size() != feature_maps.front().size()))
|
||
|
CV_Error(Error::StsBadMask,"wrong mask type or size");
|
||
|
keypoints.clear();
|
||
|
|
||
|
cv::Mat mask;
|
||
|
if(!_mask.empty())
|
||
|
mask = _mask;
|
||
|
else
|
||
|
mask = cv::Mat::ones(feature_maps.front().size(),CV_8UC1);
|
||
|
|
||
|
int super_res = int(parameters.super_resolution);
|
||
|
int super_scale = super_res+1;
|
||
|
float super_comp = 0.25F*super_res;
|
||
|
|
||
|
// for each scale
|
||
|
float strength = parameters.strength;
|
||
|
std::vector<int> windows;
|
||
|
cv::Point pt,pt2;
|
||
|
double min,max;
|
||
|
cv::Mat src;
|
||
|
for(int scale=parameters.max_scale;scale>=parameters.min_scale;--scale)
|
||
|
{
|
||
|
int window_size = int(pow(2.0,scale+super_res)+1);
|
||
|
float window_size2 = 0.5F*window_size;
|
||
|
float window_size4 = 0.25F*window_size;
|
||
|
int window_size2i = int(round(window_size2));
|
||
|
|
||
|
const cv::Mat &feature_map = feature_maps[scale-parameters.min_scale];
|
||
|
int y = ((feature_map.rows)/window_size)-6;
|
||
|
int x = ((feature_map.cols)/window_size)-6;
|
||
|
for(int row=5;row<y;++row)
|
||
|
{
|
||
|
for(int col=5;col<x;++col)
|
||
|
{
|
||
|
Rect rect(col*window_size,row*window_size,window_size,window_size);
|
||
|
src = feature_map(rect);
|
||
|
cv::minMaxLoc(src,&min,&max,NULL,&pt);
|
||
|
if(min == max || max < strength)
|
||
|
continue;
|
||
|
|
||
|
cv::Point pos(pt.x+rect.x,pt.y+rect.y);
|
||
|
if(mask.at<unsigned char>(pos.y,pos.x) == 0)
|
||
|
continue;
|
||
|
|
||
|
Rect rect2(int(pos.x-window_size2),int(pos.y-window_size2),window_size,window_size);
|
||
|
src = feature_map(rect2);
|
||
|
cv::minMaxLoc(src,NULL,NULL,NULL,&pt2);
|
||
|
if(pos.x == pt2.x+rect2.x && pos.y == pt2.y+rect2.y)
|
||
|
{
|
||
|
// the point is the best one on the current scale
|
||
|
// check all larger scales if there is a stronger one
|
||
|
double max2;
|
||
|
int scale2= scale-1;
|
||
|
//parameters.min_scale;
|
||
|
for(;scale2>=parameters.min_scale;--scale2)
|
||
|
{
|
||
|
cv::minMaxLoc(feature_maps[scale2-parameters.min_scale](rect),NULL,&max2,NULL,NULL);
|
||
|
if(max2 > max)
|
||
|
break;
|
||
|
}
|
||
|
if(scale2<parameters.min_scale && pos.x+1 < feature_map.cols && pos.y+1 < feature_map.rows)
|
||
|
{
|
||
|
float sub_x = float(calcSubpixel(feature_map.at<float>(pos.y,pos.x-1),
|
||
|
feature_map.at<float>(pos.y,pos.x),
|
||
|
feature_map.at<float>(pos.y,pos.x+1)));
|
||
|
float sub_y = float(calcSubpixel(feature_map.at<float>(pos.y-1,pos.x),
|
||
|
feature_map.at<float>(pos.y,pos.x),
|
||
|
feature_map.at<float>(pos.y+1,pos.x)));
|
||
|
cv::KeyPoint kpt(sub_x+pos.x,sub_y+pos.y,float(window_size),0.F,float(max),scale);
|
||
|
int x2 = std::max(0,int(kpt.pt.x-window_size4));
|
||
|
int y2 = std::max(0,int(kpt.pt.y-window_size4));
|
||
|
int w = std::min(int(mask.cols-x2),window_size2i);
|
||
|
int h = std::min(int(mask.rows-y2),window_size2i);
|
||
|
mask(cv::Rect(x2,y2,w,h)) = 0.0;
|
||
|
if(super_scale != 1)
|
||
|
{
|
||
|
kpt.pt.x /= super_scale;
|
||
|
kpt.pt.y /= super_scale;
|
||
|
kpt.pt.x -= super_comp;
|
||
|
kpt.pt.y -= super_comp;
|
||
|
kpt.size /= super_scale;
|
||
|
}
|
||
|
keypoints.push_back(kpt);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FastX::detectAndCompute(cv::InputArray image,cv::InputArray mask,std::vector<cv::KeyPoint>& keypoints,
|
||
|
cv::OutputArray _descriptors,bool useProvidedKeyPoints)
|
||
|
{
|
||
|
useProvidedKeyPoints = false;
|
||
|
detectImpl(image.getMat(),keypoints,mask.getMat());
|
||
|
if(!_descriptors.needed())
|
||
|
return;
|
||
|
|
||
|
// generate descriptors based on their position
|
||
|
_descriptors.create(int(keypoints.size()),2,CV_32FC1);
|
||
|
cv::Mat descriptors = _descriptors.getMat();
|
||
|
std::vector<cv::KeyPoint>::const_iterator iter = keypoints.begin();
|
||
|
for(int row=0;iter != keypoints.end();++iter,++row)
|
||
|
{
|
||
|
descriptors.at<float>(row,0) = iter->pt.x;
|
||
|
descriptors.at<float>(row,1) = iter->pt.y;
|
||
|
}
|
||
|
if(!useProvidedKeyPoints) // suppress compiler warning
|
||
|
return;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void FastX::detectImpl(const cv::Mat& gray_image,
|
||
|
std::vector<cv::Mat> &rotated_images,
|
||
|
std::vector<cv::Mat> &feature_maps,
|
||
|
const cv::Mat &_mask)const
|
||
|
{
|
||
|
if(!_mask.empty())
|
||
|
CV_Error(Error::StsBadSize, "Mask is not supported");
|
||
|
CV_CheckTypeEQ(gray_image.type(), CV_8UC1, "Unsupported image type");
|
||
|
|
||
|
// up-sample if needed
|
||
|
int super_res = int(parameters.super_resolution);
|
||
|
if(super_res)
|
||
|
cv::resize(gray_image,gray_image,cv::Size(),2,2);
|
||
|
|
||
|
//for each scale
|
||
|
int num_scales = parameters.max_scale-parameters.min_scale+1;
|
||
|
rotated_images.resize(num_scales);
|
||
|
feature_maps.resize(num_scales);
|
||
|
for(int scale=parameters.min_scale;scale <= parameters.max_scale;++scale)
|
||
|
{
|
||
|
// calc images
|
||
|
// for each angle step
|
||
|
int scale_id = scale-parameters.min_scale;
|
||
|
cv::Mat rotated,filtered_h,filtered_v;
|
||
|
int diag = int(sqrt(gray_image.rows*gray_image.rows+gray_image.cols*gray_image.cols));
|
||
|
cv::Size size(diag,diag);
|
||
|
int num = int(0.5001*M_PI/parameters.resolution);
|
||
|
std::vector<cv::Mat> images;
|
||
|
images.resize(2*num);
|
||
|
int scale_size = int(1+pow(2.0,scale+1+super_res));
|
||
|
int scale_size2 = int((scale_size/10)*2+1);
|
||
|
for(int i=0;i<num;++i)
|
||
|
{
|
||
|
float angle = parameters.resolution*i;
|
||
|
rotate(-angle,gray_image,size,rotated);
|
||
|
cv::blur(rotated,filtered_h,cv::Size(scale_size,scale_size2));
|
||
|
cv::blur(rotated,filtered_v,cv::Size(scale_size2,scale_size));
|
||
|
|
||
|
// rotate filtered images back
|
||
|
rotate(angle,filtered_h,gray_image.size(),images[i]);
|
||
|
rotate(angle,filtered_v,gray_image.size(),images[i+num]);
|
||
|
}
|
||
|
cv::merge(images,rotated_images[scale_id]);
|
||
|
|
||
|
// calc feature map
|
||
|
calcFeatureMap(rotated_images[scale_id],feature_maps[scale_id]);
|
||
|
|
||
|
// filter feature map to improve impulse responses
|
||
|
if(parameters.filter)
|
||
|
{
|
||
|
cv::Mat high,low;
|
||
|
cv::blur(feature_maps[scale_id],low,cv::Size(scale_size,scale_size));
|
||
|
int scale2 = int((scale_size/6))*2+1;
|
||
|
cv::blur(feature_maps[scale_id],high,cv::Size(scale2,scale2));
|
||
|
feature_maps[scale_id] = high-0.8*low;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FastX::detectImpl(const cv::Mat& image,std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,const cv::Mat &mask)const
|
||
|
{
|
||
|
std::vector<cv::Mat> rotated_images;
|
||
|
detectImpl(image,rotated_images,feature_maps,mask);
|
||
|
findKeyPoints(feature_maps,keypoints,mask);
|
||
|
}
|
||
|
|
||
|
void FastX::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask)const
|
||
|
{
|
||
|
std::vector<cv::Mat> feature_maps;
|
||
|
detectImpl(image.getMat(),keypoints,feature_maps,mask.getMat());
|
||
|
}
|
||
|
|
||
|
void FastX::detectImpl(const Mat& src, std::vector<KeyPoint>& keypoints, const Mat& mask)const
|
||
|
{
|
||
|
std::vector<cv::Mat> feature_maps;
|
||
|
detectImpl(src,keypoints,feature_maps,mask);
|
||
|
}
|
||
|
|
||
|
|
||
|
Ellipse::Ellipse():
|
||
|
angle(0),
|
||
|
cosf(0),
|
||
|
sinf(0)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
Ellipse::Ellipse(const cv::Point2f &_center, const cv::Size2f &_axes, float _angle):
|
||
|
center(_center),
|
||
|
axes(_axes),
|
||
|
angle(_angle),
|
||
|
cosf(cos(-_angle)),
|
||
|
sinf(sin(-_angle))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
Ellipse::Ellipse(const Ellipse &other)
|
||
|
{
|
||
|
center = other.center;
|
||
|
axes= other.axes;
|
||
|
angle= other.angle;
|
||
|
cosf = other.cosf;
|
||
|
sinf = other.sinf;
|
||
|
}
|
||
|
|
||
|
const cv::Size2f &Ellipse::getAxes()const
|
||
|
{
|
||
|
return axes;
|
||
|
}
|
||
|
|
||
|
cv::Point2f Ellipse::getCenter()const
|
||
|
{
|
||
|
return center;
|
||
|
}
|
||
|
|
||
|
void Ellipse::draw(cv::InputOutputArray img,const cv::Scalar &color)const
|
||
|
{
|
||
|
cv::ellipse(img,center,axes,360-angle/M_PI*180,0,360,color);
|
||
|
}
|
||
|
|
||
|
bool Ellipse::contains(const cv::Point2f &pt)const
|
||
|
{
|
||
|
cv::Point2f ptc = pt-center;
|
||
|
float x = cosf*ptc.x+sinf*ptc.y;
|
||
|
float y = -sinf*ptc.x+cosf*ptc.y;
|
||
|
if(x*x/(axes.width*axes.width)+y*y/(axes.height*axes.height) <= 1.0)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
// returns false if the angle from the line pt1-pt2 to the line pt3-pt4 is negative
|
||
|
static bool checkOrientation(const cv::Point2f &pt1,const cv::Point2f &pt2,
|
||
|
const cv::Point2f &pt3,const cv::Point2f &pt4)
|
||
|
{
|
||
|
cv::Point3f p1(pt2.x-pt1.x,pt2.y-pt1.y,0);
|
||
|
cv::Point3f p2(pt4.x-pt3.x,pt4.y-pt3.y,0);
|
||
|
return p1.cross(p2).z > 0;
|
||
|
}
|
||
|
|
||
|
static bool sortKeyPoint(const cv::KeyPoint &pt1,const cv::KeyPoint &pt2)
|
||
|
{
|
||
|
// used as comparison function for partial sort
|
||
|
// the keypoints with the best score should be first
|
||
|
return pt1.response > pt2.response;
|
||
|
}
|
||
|
|
||
|
cv::Mat Chessboard::getObjectPoints(const cv::Size &pattern_size,float cell_size)
|
||
|
{
|
||
|
cv::Mat result(pattern_size.width*pattern_size.height,1,CV_32FC3);
|
||
|
for(int row=0;row < pattern_size.height;++row)
|
||
|
{
|
||
|
for(int col=0;col< pattern_size.width;++col)
|
||
|
{
|
||
|
cv::Point3f &pt = *result.ptr<cv::Point3f>(row*pattern_size.width+col);
|
||
|
pt.x = cell_size*col;
|
||
|
pt.y = cell_size*row;
|
||
|
pt.z = 0;
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::Cell::empty()const
|
||
|
{
|
||
|
// check if one of its corners has NaN
|
||
|
if(top_left->x != top_left->x || top_left->y != top_left->y)
|
||
|
return true;
|
||
|
if(top_right->x != top_right->x || top_right->y != top_right->y)
|
||
|
return true;
|
||
|
if(bottom_right->x != bottom_right->x || bottom_right->y != bottom_right->y)
|
||
|
return true;
|
||
|
if(bottom_left->x != bottom_left->x || bottom_left->y != bottom_left->y)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int Chessboard::Board::Cell::getRow()const
|
||
|
{
|
||
|
int row = 0;
|
||
|
Cell const* temp = this;
|
||
|
for(;temp->top;temp=temp->top,++row);
|
||
|
return row;
|
||
|
}
|
||
|
|
||
|
int Chessboard::Board::Cell::getCol()const
|
||
|
{
|
||
|
int col = 0;
|
||
|
Cell const* temp = this;
|
||
|
for(;temp->left;temp=temp->left,++col);
|
||
|
return col;
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::Cell::Cell() :
|
||
|
top_left(NULL), top_right(NULL), bottom_right(NULL), bottom_left(NULL),
|
||
|
left(NULL), top(NULL), right(NULL), bottom(NULL),black(false)
|
||
|
{}
|
||
|
|
||
|
Chessboard::Board::PointIter::PointIter(Cell *_cell,CornerIndex _corner_index):
|
||
|
corner_index(_corner_index),
|
||
|
cell(_cell)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::PointIter::PointIter(const PointIter &other)
|
||
|
{
|
||
|
this->operator=(other);
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::PointIter::operator=(const PointIter &other)
|
||
|
{
|
||
|
corner_index = other.corner_index;
|
||
|
cell = other.cell;
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::Cell* Chessboard::Board::PointIter::getCell()
|
||
|
{
|
||
|
return cell;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::PointIter::valid()const
|
||
|
{
|
||
|
return cell != NULL;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::PointIter::isNaN()const
|
||
|
{
|
||
|
const cv::Point2f *pt = operator*();
|
||
|
if(pt->x != pt->x || pt->y != pt->y) // NaN check
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::PointIter::checkCorner()const
|
||
|
{
|
||
|
if(!cell->empty())
|
||
|
return true;
|
||
|
// test all other cells
|
||
|
switch(corner_index)
|
||
|
{
|
||
|
case BOTTOM_LEFT:
|
||
|
if(cell->left)
|
||
|
{
|
||
|
if(!cell->left->empty())
|
||
|
return true;
|
||
|
if(cell->left->bottom && !cell->left->bottom->empty())
|
||
|
return true;
|
||
|
}
|
||
|
if(cell->bottom)
|
||
|
{
|
||
|
if(!cell->bottom->empty())
|
||
|
return true;
|
||
|
if(cell->bottom->left && !cell->bottom->left->empty())
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
case TOP_LEFT:
|
||
|
if(cell->left)
|
||
|
{
|
||
|
if(!cell->left->empty())
|
||
|
return true;
|
||
|
if(cell->left->top && !cell->left->top->empty())
|
||
|
return true;
|
||
|
}
|
||
|
if(cell->top)
|
||
|
{
|
||
|
if(!cell->top->empty())
|
||
|
return true;
|
||
|
if(cell->top->left && !cell->top->left->empty())
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
case TOP_RIGHT:
|
||
|
if(cell->right)
|
||
|
{
|
||
|
if(!cell->right->empty())
|
||
|
return true;
|
||
|
if(cell->right->top && !cell->right->top->empty())
|
||
|
return true;
|
||
|
}
|
||
|
if(cell->top)
|
||
|
{
|
||
|
if(!cell->top->empty())
|
||
|
return true;
|
||
|
if(cell->top->right && !cell->top->right->empty())
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
case BOTTOM_RIGHT:
|
||
|
if(cell->right)
|
||
|
{
|
||
|
if(!cell->right->empty())
|
||
|
return true;
|
||
|
if(cell->right->bottom && !cell->right->bottom->empty())
|
||
|
return true;
|
||
|
}
|
||
|
if(cell->bottom)
|
||
|
{
|
||
|
if(!cell->bottom->empty())
|
||
|
return true;
|
||
|
if(cell->bottom->right && !cell->bottom->right->empty())
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
CV_Assert(false);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool Chessboard::Board::PointIter::left(bool check_empty)
|
||
|
{
|
||
|
switch(corner_index)
|
||
|
{
|
||
|
case BOTTOM_LEFT:
|
||
|
if(cell->left && (!check_empty || !cell->left->empty()))
|
||
|
cell = cell->left;
|
||
|
else if(check_empty && cell->bottom && cell->bottom->left && !cell->bottom->left->empty())
|
||
|
{
|
||
|
cell = cell->bottom->left;
|
||
|
corner_index = TOP_LEFT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case TOP_LEFT:
|
||
|
if(cell->left && (!check_empty || !cell->left->empty()))
|
||
|
cell = cell->left;
|
||
|
else if(check_empty && cell->top && cell->top->left && !cell->top->left->empty())
|
||
|
{
|
||
|
cell = cell->top->left;
|
||
|
corner_index = BOTTOM_LEFT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case TOP_RIGHT:
|
||
|
corner_index = TOP_LEFT;
|
||
|
break;
|
||
|
case BOTTOM_RIGHT:
|
||
|
corner_index = BOTTOM_LEFT;
|
||
|
break;
|
||
|
default:
|
||
|
CV_Assert(false);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::PointIter::top(bool check_empty)
|
||
|
|
||
|
{
|
||
|
switch(corner_index)
|
||
|
{
|
||
|
case TOP_RIGHT:
|
||
|
if(cell->top && (!check_empty || !cell->top->empty()))
|
||
|
cell = cell->top;
|
||
|
else if(check_empty && cell->right && cell->right->top&& !cell->right->top->empty())
|
||
|
{
|
||
|
cell = cell->right->top;
|
||
|
corner_index = TOP_LEFT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case TOP_LEFT:
|
||
|
if(cell->top && (!check_empty || !cell->top->empty()))
|
||
|
cell = cell->top;
|
||
|
else if(check_empty && cell->left && cell->left->top&& !cell->left->top->empty())
|
||
|
{
|
||
|
cell = cell->left->top;
|
||
|
corner_index = TOP_RIGHT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case BOTTOM_LEFT:
|
||
|
corner_index = TOP_LEFT;
|
||
|
break;
|
||
|
case BOTTOM_RIGHT:
|
||
|
corner_index = TOP_RIGHT;
|
||
|
break;
|
||
|
default:
|
||
|
CV_Assert(false);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::PointIter::right(bool check_empty)
|
||
|
{
|
||
|
switch(corner_index)
|
||
|
{
|
||
|
case TOP_RIGHT:
|
||
|
if(cell->right && (!check_empty || !cell->right->empty()))
|
||
|
cell = cell->right;
|
||
|
else if(check_empty && cell->top && cell->top->right && !cell->top->right->empty())
|
||
|
{
|
||
|
cell = cell->top->right;
|
||
|
corner_index = BOTTOM_RIGHT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case BOTTOM_RIGHT:
|
||
|
if(cell->right && (!check_empty || !cell->right->empty()))
|
||
|
cell = cell->right;
|
||
|
else if(check_empty && cell->bottom && cell->bottom->right && !cell->bottom->right->empty())
|
||
|
{
|
||
|
cell = cell->bottom->right;
|
||
|
corner_index = TOP_RIGHT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case TOP_LEFT:
|
||
|
corner_index = TOP_RIGHT;
|
||
|
break;
|
||
|
case BOTTOM_LEFT:
|
||
|
corner_index = BOTTOM_RIGHT;
|
||
|
break;
|
||
|
default:
|
||
|
CV_Assert(false);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::PointIter::bottom(bool check_empty)
|
||
|
{
|
||
|
switch(corner_index)
|
||
|
{
|
||
|
case BOTTOM_LEFT:
|
||
|
if(cell->bottom && (!check_empty || !cell->bottom->empty()))
|
||
|
cell = cell->bottom;
|
||
|
else if(check_empty && cell->left && cell->left->bottom && !cell->left->bottom->empty())
|
||
|
{
|
||
|
cell = cell->left->bottom;
|
||
|
corner_index = BOTTOM_RIGHT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case BOTTOM_RIGHT:
|
||
|
if(cell->bottom && (!check_empty || !cell->bottom->empty()))
|
||
|
cell = cell->bottom;
|
||
|
else if(check_empty && cell->right && cell->right->bottom && !cell->right->bottom->empty())
|
||
|
{
|
||
|
cell = cell->right->bottom;
|
||
|
corner_index = BOTTOM_LEFT;
|
||
|
}
|
||
|
else
|
||
|
return false;
|
||
|
break;
|
||
|
case TOP_LEFT:
|
||
|
corner_index = BOTTOM_LEFT;
|
||
|
break;
|
||
|
case TOP_RIGHT:
|
||
|
corner_index = BOTTOM_RIGHT;
|
||
|
break;
|
||
|
default:
|
||
|
CV_Assert(false);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
const cv::Point2f* Chessboard::Board::PointIter::operator*()const
|
||
|
{
|
||
|
switch(corner_index)
|
||
|
{
|
||
|
case TOP_LEFT:
|
||
|
return cell->top_left;
|
||
|
case TOP_RIGHT:
|
||
|
return cell->top_right;
|
||
|
case BOTTOM_RIGHT:
|
||
|
return cell->bottom_right;
|
||
|
case BOTTOM_LEFT:
|
||
|
return cell->bottom_left;
|
||
|
default:
|
||
|
CV_Assert(false);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
const cv::Point2f* Chessboard::Board::PointIter::operator->()const
|
||
|
{
|
||
|
return operator*();
|
||
|
}
|
||
|
|
||
|
cv::Point2f* Chessboard::Board::PointIter::operator*()
|
||
|
{
|
||
|
const cv::Point2f *pt = const_cast<const PointIter*>(this)->operator*();
|
||
|
return const_cast<cv::Point2f*>(pt);
|
||
|
}
|
||
|
|
||
|
cv::Point2f* Chessboard::Board::PointIter::operator->()
|
||
|
{
|
||
|
return operator*();
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::Board(float _white_angle,float _black_angle):
|
||
|
top_left(NULL),
|
||
|
rows(0),
|
||
|
cols(0),
|
||
|
white_angle(_white_angle),
|
||
|
black_angle(_black_angle)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
|
||
|
Chessboard::Board::Board(const Chessboard::Board &other):
|
||
|
top_left(NULL),
|
||
|
rows(0),
|
||
|
cols(0)
|
||
|
{
|
||
|
*this = other;
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::Board(const cv::Size &size, const std::vector<cv::Point2f> &points,float _white_angle,float _black_angle):
|
||
|
top_left(NULL),
|
||
|
rows(0),
|
||
|
cols(0),
|
||
|
white_angle(_white_angle),
|
||
|
black_angle(_black_angle)
|
||
|
{
|
||
|
if(size.width*size.height != int(points.size()))
|
||
|
CV_Error(Error::StsBadArg,"size mismatch");
|
||
|
if(size.width < 3 || size.height < 3)
|
||
|
CV_Error(Error::StsBadArg,"at least 3 rows and cols are needed to initialize the board");
|
||
|
|
||
|
// init board with 3x3
|
||
|
// TODO write function speeding up the copying
|
||
|
cv::Mat data = cv::Mat(points).reshape(2,size.height);
|
||
|
cv::Mat temp;
|
||
|
data(cv::Rect(0,0,3,3)).copyTo(temp);
|
||
|
std::vector<cv::Point2f> ipoints = temp.reshape(2,1);
|
||
|
if(!init(ipoints))
|
||
|
return;
|
||
|
|
||
|
// add all cols
|
||
|
for(int col=3 ; col< data.cols;++col)
|
||
|
{
|
||
|
data(cv::Rect(col,0,1,3)).copyTo(temp);
|
||
|
ipoints = temp.reshape(2,1);
|
||
|
addColumnRight(ipoints);
|
||
|
}
|
||
|
|
||
|
// add all rows
|
||
|
for(int row=3; row < data.rows;++row)
|
||
|
{
|
||
|
data(cv::Rect(0,row,cols,1)).copyTo(temp);
|
||
|
ipoints = temp.reshape(2,1);
|
||
|
addRowBottom(ipoints);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::~Board()
|
||
|
{
|
||
|
clear();
|
||
|
}
|
||
|
|
||
|
std::vector<cv::Point2f> Chessboard::Board::getCellCenters()const
|
||
|
{
|
||
|
int icols = int(colCount());
|
||
|
int irows = int(rowCount());
|
||
|
if(icols < 3 || irows < 3)
|
||
|
throw std::runtime_error("getCellCenters: Chessboard must be at least consist of 3 rows and cols to calcualte the cell centers");
|
||
|
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Matx33d H(estimateHomography(DUMMY_FIELD_SIZE));
|
||
|
cv::Vec3d pt1,pt2;
|
||
|
pt1[2] = 1;
|
||
|
for(int row = 0;row < irows;++row)
|
||
|
{
|
||
|
pt1[1] = (0.5+row)*DUMMY_FIELD_SIZE;
|
||
|
for(int col= 0;col< icols;++col)
|
||
|
{
|
||
|
pt1[0] = (0.5+col)*DUMMY_FIELD_SIZE;
|
||
|
pt2 = H*pt1;
|
||
|
points.push_back(cv::Point2f(float(pt2[0]/pt2[2]),float(pt2[1]/pt2[2])));
|
||
|
}
|
||
|
}
|
||
|
return points;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::draw(cv::InputArray m,cv::OutputArray out,cv::InputArray _H)const
|
||
|
{
|
||
|
cv::Mat H = _H.getMat();
|
||
|
if(H.empty())
|
||
|
H = estimateHomography();
|
||
|
cv::Mat image = m.getMat().clone();
|
||
|
if(image.type() == CV_32FC1)
|
||
|
{
|
||
|
double maxVal,minVal;
|
||
|
cv::minMaxLoc(image, &minVal, &maxVal);
|
||
|
double scale = 255.0/(maxVal-minVal);
|
||
|
image.convertTo(image,CV_8UC1,scale,-scale*minVal);
|
||
|
cv::applyColorMap(image,image,cv::COLORMAP_JET);
|
||
|
}
|
||
|
|
||
|
// draw all points and search areas
|
||
|
std::vector<cv::Point2f> points = getCorners();
|
||
|
std::vector<cv::Point2f>::const_iterator iter1 = points.begin();
|
||
|
int icols = int(colCount());
|
||
|
int irows = int(rowCount());
|
||
|
int count=0;
|
||
|
for(int row=0;row<irows;++row)
|
||
|
{
|
||
|
for(int col=0;col<icols;++col,++iter1)
|
||
|
{
|
||
|
if(iter1->x != iter1->x) // NaN check
|
||
|
{
|
||
|
// draw search ellipse
|
||
|
Ellipse ellipse = estimateSearchArea(H,row,col,0.4F);
|
||
|
ellipse.draw(image,cv::Scalar::all(200));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::circle(image,*iter1,4,cv::Scalar(count*20,count*20,count*20,255),-1);
|
||
|
++count;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// draw field colors
|
||
|
for(int row=0;row<irows-1;++row)
|
||
|
{
|
||
|
for(int col=0;col<icols-1;++col)
|
||
|
{
|
||
|
const Cell *cell = getCell(row,col);
|
||
|
cv::Point2f center = *cell->top_left+*cell->top_right+*cell->bottom_left+*cell->bottom_right;
|
||
|
center.x /=4;
|
||
|
center.y /=4;
|
||
|
int size = 4;
|
||
|
if(row==0&&col==0)
|
||
|
size=8;
|
||
|
if(row==0&&col==1)
|
||
|
size=7;
|
||
|
if(cell->black)
|
||
|
cv::circle(image,center,size,cv::Scalar::all(255),-1);
|
||
|
else
|
||
|
cv::circle(image,center,size,cv::Scalar(0,0,10,255),-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out.create(image.rows,image.cols,image.type());
|
||
|
image.copyTo(out.getMat());
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::estimatePose(const cv::Size2f &real_size,cv::InputArray _K,cv::OutputArray rvec,cv::OutputArray tvec)const
|
||
|
{
|
||
|
cv::Mat K = _K.getMat();
|
||
|
if(K.type() != CV_64FC1)
|
||
|
throw std::runtime_error("wrong K type");
|
||
|
if(K.rows != 3|| K.cols != 3)
|
||
|
throw std::runtime_error("wrong K size");
|
||
|
if(isEmpty())
|
||
|
return false;
|
||
|
|
||
|
int icols = int(colCount());
|
||
|
int irows = int(rowCount());
|
||
|
float field_width = real_size.width/(icols+1);
|
||
|
float field_height= real_size.height/(irows+1);
|
||
|
// the center of the board is placed at (0,0,1)
|
||
|
int offset_x = int(-(icols-1)*field_width*0.5F);
|
||
|
int offset_y = int(-(irows-1)*field_width*0.5F);
|
||
|
|
||
|
std::vector<cv::Point2f> image_points;
|
||
|
std::vector<cv::Point3f> object_points;
|
||
|
std::vector<cv::Point2f> corners_temp = getCorners(true);
|
||
|
std::vector<cv::Point2f>::const_iterator iter = corners_temp.begin();
|
||
|
for(int row = 0;row < irows;++row)
|
||
|
{
|
||
|
for(int col= 0;col<icols;++col,++iter)
|
||
|
{
|
||
|
if(iter == corners_temp.end())
|
||
|
CV_Error(Error::StsInternal,"internal error");
|
||
|
if(iter->x != iter->x) // NaN check
|
||
|
continue;
|
||
|
image_points.push_back(*iter);
|
||
|
object_points.push_back(cv::Point3f(field_width*col-offset_x,field_height*row-offset_y,1.0));
|
||
|
}
|
||
|
}
|
||
|
return cv::solvePnP(object_points,image_points,K,cv::Mat(),rvec,tvec);//,cv::SOLVEPNP_P3P);
|
||
|
}
|
||
|
|
||
|
float Chessboard::Board::getBlackAngle()const
|
||
|
{
|
||
|
return black_angle;
|
||
|
}
|
||
|
|
||
|
float Chessboard::Board::getWhiteAngle()const
|
||
|
{
|
||
|
return white_angle;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::swap(Chessboard::Board &other)
|
||
|
{
|
||
|
corners.swap(other.corners);
|
||
|
cells.swap(other.cells);
|
||
|
std::swap(rows,other.rows);
|
||
|
std::swap(cols,other.cols);
|
||
|
std::swap(top_left,other.top_left);
|
||
|
std::swap(white_angle,other.white_angle);
|
||
|
std::swap(black_angle,other.black_angle);
|
||
|
}
|
||
|
|
||
|
Chessboard::Board& Chessboard::Board::operator=(const Chessboard::Board &other)
|
||
|
{
|
||
|
if(this == &other)
|
||
|
return *this;
|
||
|
clear();
|
||
|
rows = other.rows;
|
||
|
cols = other.cols;
|
||
|
white_angle = other.white_angle;
|
||
|
black_angle = other.black_angle;
|
||
|
cells.reserve(other.cells.size());
|
||
|
corners.reserve(other.corners.size());
|
||
|
|
||
|
//copy all points and generate mapping
|
||
|
std::map<cv::Point2f*,cv::Point2f*> point_point_mapping;
|
||
|
point_point_mapping[NULL] = NULL;
|
||
|
std::vector<cv::Point2f*>::const_iterator iter = other.corners.begin();
|
||
|
for(;iter != other.corners.end();++iter)
|
||
|
{
|
||
|
cv::Point2f *pt = new cv::Point2f(**iter);
|
||
|
point_point_mapping[*iter] = pt;
|
||
|
corners.push_back(pt);
|
||
|
}
|
||
|
|
||
|
//copy all cells using mapping
|
||
|
std::map<Cell*,Cell*> cell_cell_mapping;
|
||
|
std::vector<Cell*>::const_iterator iter2 = other.cells.begin();
|
||
|
for(;iter2 != other.cells.end();++iter2)
|
||
|
{
|
||
|
Cell *cell = new Cell;
|
||
|
cell->top_left = point_point_mapping[(*iter2)->top_left];
|
||
|
cell->top_right= point_point_mapping[(*iter2)->top_right];
|
||
|
cell->bottom_right= point_point_mapping[(*iter2)->bottom_right];
|
||
|
cell->bottom_left = point_point_mapping[(*iter2)->bottom_left];
|
||
|
cell->black = (*iter2)->black;
|
||
|
cell_cell_mapping[*iter2] = cell;
|
||
|
cells.push_back(cell);
|
||
|
}
|
||
|
|
||
|
//set cell connections using mapping
|
||
|
cell_cell_mapping[NULL] = NULL;
|
||
|
iter2 = other.cells.begin();
|
||
|
std::vector<Cell*>::iterator iter3 = cells.begin();
|
||
|
for(;iter2 != other.cells.end();++iter2,++iter3)
|
||
|
{
|
||
|
(*iter3)->left = cell_cell_mapping[(*iter2)->left];
|
||
|
(*iter3)->top = cell_cell_mapping[(*iter2)->top];
|
||
|
(*iter3)->right = cell_cell_mapping[(*iter2)->right];
|
||
|
(*iter3)->bottom= cell_cell_mapping[(*iter2)->bottom];
|
||
|
}
|
||
|
top_left = cell_cell_mapping[other.top_left];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::normalizeOrientation(bool bblack)
|
||
|
{
|
||
|
// fix ordering
|
||
|
cv::Point2f y = getCorner(0,1)-getCorner(2,1);
|
||
|
cv::Point2f x = getCorner(1,2)-getCorner(1,0);
|
||
|
cv::Point3f y3d(y.x,y.y,0);
|
||
|
cv::Point3f x3d(x.x,x.y,0);
|
||
|
if(x3d.cross(y3d).z > 0)
|
||
|
flipHorizontal();
|
||
|
|
||
|
//normalize orientation so that first element is black or white
|
||
|
const Cell* cell = getCell(0,0);
|
||
|
if(cell->black != bblack && colCount()%2 != 0)
|
||
|
rotateLeft();
|
||
|
else if(cell->black != bblack && rowCount()%2 != 0)
|
||
|
{
|
||
|
rotateLeft();
|
||
|
rotateLeft();
|
||
|
}
|
||
|
|
||
|
//find closest point to top left image corner
|
||
|
//in case of symmetric checkerboard
|
||
|
if(colCount() == rowCount())
|
||
|
{
|
||
|
PointIter iter_top_right(top_left,TOP_RIGHT);
|
||
|
while(iter_top_right.right());
|
||
|
PointIter iter_bottom_right(iter_top_right);
|
||
|
while(iter_bottom_right.bottom());
|
||
|
PointIter iter_bottom_left(top_left,BOTTOM_LEFT);
|
||
|
while(iter_bottom_left.bottom());
|
||
|
// check if one of the cell is empty and do not normalize if so
|
||
|
if(top_left->empty() || iter_top_right.getCell()->empty() ||
|
||
|
iter_bottom_left.getCell()->empty() || iter_bottom_right.getCell()->empty())
|
||
|
return;
|
||
|
|
||
|
float d1 = pow(top_left->top_left->x,2)+pow(top_left->top_left->y,2);
|
||
|
float d2 = pow((*iter_top_right)->x,2)+pow((*iter_top_right)->y,2);
|
||
|
float d3 = pow((*iter_bottom_left)->x,2)+pow((*iter_bottom_left)->y,2);
|
||
|
float d4 = pow((*iter_bottom_right)->x,2)+pow((*iter_bottom_right)->y,2);
|
||
|
if(d2 <= d1 && d2 <= d3 && d2 <= d4) // top left is top right
|
||
|
rotateLeft();
|
||
|
else if(d3 <= d1 && d3 <= d2 && d3 <= d4) // top left is bottom left
|
||
|
rotateRight();
|
||
|
else if(d4 <= d1 && d4 <= d2 && d4 <= d3) // top left is bottom right
|
||
|
{
|
||
|
rotateLeft();
|
||
|
rotateLeft();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::rotateRight()
|
||
|
{
|
||
|
PointIter p_iter(top_left,BOTTOM_LEFT);
|
||
|
while(p_iter.bottom());
|
||
|
|
||
|
std::vector<Cell*>::iterator iter = cells.begin();
|
||
|
for(;iter != cells.end();++iter)
|
||
|
{
|
||
|
Cell *temp = (*iter)->bottom;
|
||
|
(*iter)->bottom = (*iter)->right;
|
||
|
(*iter)->right= (*iter)->top;
|
||
|
(*iter)->top= (*iter)->left;
|
||
|
(*iter)->left = temp;
|
||
|
|
||
|
cv::Point2f *ptemp = (*iter)->bottom_left;
|
||
|
(*iter)->bottom_left= (*iter)->bottom_right;
|
||
|
(*iter)->bottom_right= (*iter)->top_right;
|
||
|
(*iter)->top_right= (*iter)->top_left;
|
||
|
(*iter)->top_left= ptemp;
|
||
|
}
|
||
|
int temp = rows;
|
||
|
rows = cols;
|
||
|
cols = temp;
|
||
|
top_left = p_iter.getCell();
|
||
|
}
|
||
|
|
||
|
|
||
|
void Chessboard::Board::rotateLeft()
|
||
|
{
|
||
|
PointIter p_iter(top_left,TOP_RIGHT);
|
||
|
while(p_iter.right());
|
||
|
|
||
|
std::vector<Cell*>::iterator iter = cells.begin();
|
||
|
for(;iter != cells.end();++iter)
|
||
|
{
|
||
|
Cell *temp = (*iter)->top;
|
||
|
(*iter)->top = (*iter)->right;
|
||
|
(*iter)->right= (*iter)->bottom;
|
||
|
(*iter)->bottom= (*iter)->left;
|
||
|
(*iter)->left = temp;
|
||
|
|
||
|
cv::Point2f *ptemp = (*iter)->top_left;
|
||
|
(*iter)->top_left = (*iter)->top_right;
|
||
|
(*iter)->top_right= (*iter)->bottom_right;
|
||
|
(*iter)->bottom_right = (*iter)->bottom_left;
|
||
|
(*iter)->bottom_left = ptemp;
|
||
|
}
|
||
|
int temp = rows;
|
||
|
rows = cols;
|
||
|
cols = temp;
|
||
|
top_left = p_iter.getCell();
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::flipHorizontal()
|
||
|
{
|
||
|
PointIter p_iter(top_left,TOP_RIGHT);
|
||
|
while(p_iter.right());
|
||
|
|
||
|
std::vector<Cell*>::iterator iter = cells.begin();
|
||
|
for(;iter != cells.end();++iter)
|
||
|
{
|
||
|
Cell *temp = (*iter)->right;
|
||
|
(*iter)->right= (*iter)->left;
|
||
|
(*iter)->left = temp;
|
||
|
|
||
|
cv::Point2f *ptemp = (*iter)->top_left;
|
||
|
(*iter)->top_left = (*iter)->top_right;
|
||
|
(*iter)->top_right = ptemp;
|
||
|
|
||
|
ptemp = (*iter)->bottom_left;
|
||
|
(*iter)->bottom_left = (*iter)->bottom_right;
|
||
|
(*iter)->bottom_right = ptemp;
|
||
|
}
|
||
|
top_left = p_iter.getCell();
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::flipVertical()
|
||
|
{
|
||
|
PointIter p_iter(top_left,BOTTOM_LEFT);
|
||
|
while(p_iter.bottom());
|
||
|
|
||
|
std::vector<Cell*>::iterator iter = cells.begin();
|
||
|
for(;iter != cells.end();++iter)
|
||
|
{
|
||
|
Cell *temp = (*iter)->top;
|
||
|
(*iter)->top= (*iter)->bottom;
|
||
|
(*iter)->bottom = temp;
|
||
|
|
||
|
cv::Point2f *ptemp = (*iter)->top_left;
|
||
|
(*iter)->top_left = (*iter)->bottom_left;
|
||
|
(*iter)->bottom_left = ptemp;
|
||
|
|
||
|
ptemp = (*iter)->top_right;
|
||
|
(*iter)->top_right = (*iter)->bottom_right;
|
||
|
(*iter)->bottom_right = ptemp;
|
||
|
}
|
||
|
top_left = p_iter.getCell();
|
||
|
}
|
||
|
|
||
|
// returns the best found score
|
||
|
// if NaN is returned for a point no point at all was found
|
||
|
// if 0 is returned the point lies outside of the ellipse
|
||
|
float Chessboard::Board::findMaxPoint(cv::flann::Index &index,const cv::Mat &data,const Ellipse &ellipse,float white_angle,float black_angle,cv::Point2f &point)
|
||
|
{
|
||
|
// flann data type enriched with angles (third column)
|
||
|
if(data.type() != CV_32FC1 || data.cols != 4)
|
||
|
CV_Error(Error::StsBadArg,"type of flann data is not supported. Expect CV_32FC1");
|
||
|
std::vector<float> query,dists;
|
||
|
std::vector<int> indices;
|
||
|
query.resize(2);
|
||
|
point = ellipse.getCenter();
|
||
|
query[0] = point.x;
|
||
|
query[1] = point.y;
|
||
|
index.knnSearch(query,indices,dists,4,cv::flann::SearchParams(64));
|
||
|
std::vector<int>::const_iterator iter = indices.begin();
|
||
|
float best_score = -std::numeric_limits<float>::max();
|
||
|
point.x = std::numeric_limits<float>::quiet_NaN();
|
||
|
point.y = std::numeric_limits<float>::quiet_NaN();
|
||
|
for(;iter != indices.end();++iter)
|
||
|
{
|
||
|
const float *val = data.ptr<float>(*iter);
|
||
|
const float &response = *(val+3);
|
||
|
if(response < best_score)
|
||
|
continue;
|
||
|
const float &a0 = *(val+2);
|
||
|
float a1 = fabs(a0-white_angle);
|
||
|
float a2 = fabs(a0-black_angle);
|
||
|
if(a1 > M_PI*0.5)
|
||
|
a1= float(fabs(a1-M_PI));
|
||
|
if(a2> M_PI*0.5)
|
||
|
a2= float(fabs(a2-M_PI));
|
||
|
if(a1 < MAX_ANGLE || a2 < MAX_ANGLE )
|
||
|
{
|
||
|
cv::Point2f pt(*val,*(val+1));
|
||
|
if(point.x != point.x) // NaN check
|
||
|
point = pt;
|
||
|
if(best_score < response && ellipse.contains(pt))
|
||
|
{
|
||
|
best_score = response;
|
||
|
point = pt;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if(best_score == -std::numeric_limits<float>::max())
|
||
|
return 0;
|
||
|
else
|
||
|
return best_score;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::clear()
|
||
|
{
|
||
|
top_left = NULL; rows = 0; cols = 0;
|
||
|
std::vector<Cell*>::iterator iter = cells.begin();
|
||
|
for(;iter != cells.end();++iter)
|
||
|
delete *iter;
|
||
|
cells.clear();
|
||
|
std::vector<cv::Point2f*>::iterator iter2 = corners.begin();
|
||
|
for(;iter2 != corners.end();++iter2)
|
||
|
delete *iter2;
|
||
|
corners.clear();
|
||
|
}
|
||
|
|
||
|
// p0 p1 p2
|
||
|
// p3 p4 p5
|
||
|
// p6 p7 p8
|
||
|
bool Chessboard::Board::init(const std::vector<cv::Point2f> points)
|
||
|
{
|
||
|
clear();
|
||
|
if(points.size() != 9)
|
||
|
CV_Error(Error::StsBadArg,"exact nine points are expected to initialize the board");
|
||
|
|
||
|
// generate cells
|
||
|
corners.resize(9);
|
||
|
for(int i=0;i < 9;++i)
|
||
|
corners[i] = new cv::Point2f(points[i]);
|
||
|
cells.resize(4);
|
||
|
for(int i=0;i<4;++i)
|
||
|
cells[i] = new Cell();
|
||
|
|
||
|
//cell 0
|
||
|
cells[0]->top_left = corners[0];
|
||
|
cells[0]->top_right = corners[1];
|
||
|
cells[0]->bottom_right = corners[4];
|
||
|
cells[0]->bottom_left = corners[3];
|
||
|
cells[0]->right = cells[1];
|
||
|
cells[0]->bottom = cells[2];
|
||
|
|
||
|
//cell 1
|
||
|
cells[1]->top_left = corners[1];
|
||
|
cells[1]->top_right = corners[2];
|
||
|
cells[1]->bottom_right = corners[5];
|
||
|
cells[1]->bottom_left = corners[4];
|
||
|
cells[1]->left = cells[0];
|
||
|
cells[1]->bottom = cells[3];
|
||
|
|
||
|
//cell 2
|
||
|
cells[2]->top_left = corners[3];
|
||
|
cells[2]->top_right = corners[4];
|
||
|
cells[2]->bottom_right = corners[7];
|
||
|
cells[2]->bottom_left = corners[6];
|
||
|
cells[2]->top = cells[0];
|
||
|
cells[2]->right = cells[3];
|
||
|
|
||
|
//cell 3
|
||
|
cells[3]->top_left = corners[4];
|
||
|
cells[3]->top_right = corners[5];
|
||
|
cells[3]->bottom_right = corners[8];
|
||
|
cells[3]->bottom_left = corners[7];
|
||
|
cells[3]->top = cells[1];
|
||
|
cells[3]->left= cells[2];
|
||
|
|
||
|
top_left = cells.front();
|
||
|
rows = 3;
|
||
|
cols = 3;
|
||
|
|
||
|
// set inital cell colors
|
||
|
Point2f pt1 = *(cells[0]->top_right)-*(cells[0]->bottom_left);
|
||
|
pt1 /= cv::norm(pt1);
|
||
|
cv::Point2f pt2(cos(white_angle),-sin(white_angle));
|
||
|
cv::Point2f pt3(cos(black_angle),-sin(black_angle));
|
||
|
if(fabs(pt1.dot(pt2)) < fabs(pt1.dot(pt3)))
|
||
|
{
|
||
|
cells[0]->black = false;
|
||
|
cells[1]->black = true;
|
||
|
cells[2]->black = true;
|
||
|
cells[3]->black = false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cells[0]->black = true;
|
||
|
cells[1]->black = false;
|
||
|
cells[2]->black = false;
|
||
|
cells[3]->black = true;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//TODO magic number
|
||
|
bool Chessboard::Board::estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2, cv::Point2f &p3)
|
||
|
{
|
||
|
// use cross ration to find new point
|
||
|
if(p0 == p1 || p0 == p2 || p1 == p2)
|
||
|
return false;
|
||
|
cv::Point2f p01 = p1-p0;
|
||
|
cv::Point2f p12 = p2-p1;
|
||
|
float a = float(cv::norm(p01));
|
||
|
float b = float(cv::norm(p12));
|
||
|
float t = (0.75F*a-0.25F*b);
|
||
|
if(t <= 0)
|
||
|
return false;
|
||
|
float c = 0.25F*b*(a+b)/t;
|
||
|
if(c < 0.1F)
|
||
|
return false;
|
||
|
p01 = p01/a;
|
||
|
p12 = p12/b;
|
||
|
// check angle between p01 and p12 < 25°
|
||
|
if(p01.dot(p12) < 0.9)
|
||
|
return false;
|
||
|
// calc mean
|
||
|
// p12 = (p01+p12)*0.5;
|
||
|
// p3 = p2+p12*c;
|
||
|
p3 = p2+p12*c;
|
||
|
|
||
|
// compensate radial distortion by fitting polynom
|
||
|
std::vector<double> x,y;
|
||
|
x.resize(3,0); y.resize(3,0);
|
||
|
x[1] = b;
|
||
|
x[2] = b+a;
|
||
|
y[2] = calcSignedDistance(-p12,p2,p0);
|
||
|
cv::Mat dst;
|
||
|
polyfit(cv::Mat(x),cv::Mat(y),dst,2);
|
||
|
double d = dst.at<double>(0)-dst.at<double>(1)*c+dst.at<double>(2)*c*c;
|
||
|
cv::Vec3f v1(p12.x,p12.y,0);
|
||
|
cv::Vec3f v2(0,0,1);
|
||
|
cv::Vec3f v3 = v1.cross(v2);
|
||
|
cv::Point2f n2(v3[0],v3[1]);
|
||
|
p3 += d*n2;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2, const cv::Point2f &p3, cv::Point2f &p4)
|
||
|
{
|
||
|
// use 1D homography to find fith point minimizing square error
|
||
|
if(p0 == p1 || p0 == p2 || p0 == p3 || p1 == p2 || p1 == p3 || p2 == p3 )
|
||
|
return false;
|
||
|
static const cv::Mat src = (cv::Mat_<double>(1,4) << 0,10,20,30);
|
||
|
cv::Point2f p01 = p1-p0;
|
||
|
cv::Point2f p02 = p2-p0;
|
||
|
cv::Point2f p03 = p3-p0;
|
||
|
float a = float(cv::norm(p01));
|
||
|
float b = float(cv::norm(p02));
|
||
|
float c = float(cv::norm(p03));
|
||
|
cv::Mat dst = (cv::Mat_<double>(1,4) << 0,a,b,c);
|
||
|
cv::Mat h = findHomography1D(src,dst);
|
||
|
float d = float((h.at<double>(0,0)*40+h.at<double>(0,1))/(h.at<double>(1,0)*40+h.at<double>(1,1)));
|
||
|
cv::Point2f p12 = p2-p1;
|
||
|
cv::Point2f p23 = p3-p2;
|
||
|
p01 = p01/a;
|
||
|
p12 = p12/cv::norm(p12);
|
||
|
p23 = p23/cv::norm(p23);
|
||
|
p4 = p3+(d-c)*p23;
|
||
|
|
||
|
// compensate radial distortion by fitting polynom
|
||
|
std::vector<double> x,y;
|
||
|
x.resize(4,0); y.resize(4,0);
|
||
|
x[1] = c-b;
|
||
|
x[2] = c-a;
|
||
|
x[3] = c;
|
||
|
y[2] = calcSignedDistance(-p23,p3,p1);
|
||
|
y[3] = calcSignedDistance(-p23,p3,p0);
|
||
|
polyfit(cv::Mat(x),cv::Mat(y),dst,2);
|
||
|
d = d-c;
|
||
|
double e = dst.at<double>(0)-dst.at<double>(1)*fabs(d)+dst.at<double>(2)*d*d;
|
||
|
cv::Vec3f v1(p23.x,p23.y,0);
|
||
|
cv::Vec3f v2(0,0,1);
|
||
|
cv::Vec3f v3 = v1.cross(v2);
|
||
|
cv::Point2f n2(v3[0],v3[1]);
|
||
|
p4 += e*n2;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// H is describing the transformation from dummy to reality
|
||
|
Ellipse Chessboard::Board::estimateSearchArea(cv::Mat _H,int row, int col,float p,int field_size)
|
||
|
{
|
||
|
cv::Matx31d point1,point2,center;
|
||
|
center(0) = (1+col)*field_size;
|
||
|
center(1) = (1+row)*field_size;
|
||
|
center(2) = 1.0;
|
||
|
point1(0) = center(0)-p*field_size;
|
||
|
point1(1) = center(1);
|
||
|
point1(2) = center(2);
|
||
|
point2(0) = center(0);
|
||
|
point2(1) = center(1)-p*field_size;
|
||
|
point2(2) = center(2);
|
||
|
|
||
|
cv::Matx33d H(_H);
|
||
|
point1 = H*point1;
|
||
|
point2 = H*point2;
|
||
|
center = H*center;
|
||
|
cv::Point2f pt(float(center(0)/center(2)),float(center(1)/center(2)));
|
||
|
cv::Point2f pt1(float(point1(0)/point1(2)),float(point1(1)/point1(2)));
|
||
|
cv::Point2f pt2(float(point2(0)/point2(2)),float(point2(1)/point2(2)));
|
||
|
|
||
|
cv::Point2f p01(pt1-pt);
|
||
|
cv::Point2f p02(pt2-pt);
|
||
|
float norm1 = float(cv::norm(p01));
|
||
|
float norm2 = float(cv::norm(p02));
|
||
|
float angle = float(acos(p01.dot(p02)/norm1/norm2));
|
||
|
cv::Size2f axes(norm1,norm2);
|
||
|
return Ellipse(pt,axes,angle);
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::estimateSearchArea(const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3,float p,Ellipse &ellipse,const cv::Point2f *p0)
|
||
|
{
|
||
|
cv::Point2f p4,n;
|
||
|
if(p0)
|
||
|
{
|
||
|
// use 1D homography
|
||
|
if(!estimatePoint(*p0,p1,p2,p3,p4))
|
||
|
return false;
|
||
|
n = p4-*p0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// use cross ratio
|
||
|
if(!estimatePoint(p1,p2,p3,p4))
|
||
|
return false;
|
||
|
n = p4-p1;
|
||
|
}
|
||
|
float norm = float(cv::norm(n));
|
||
|
n = n/norm;
|
||
|
float angle = acos(n.x);
|
||
|
if(n.y > 0)
|
||
|
angle = float(2.0F*M_PI-angle);
|
||
|
n = p4-p3;
|
||
|
norm = float(cv::norm(n));
|
||
|
double delta = std::max(3.0F,p*norm);
|
||
|
ellipse = Ellipse(p4,cv::Size(int(delta),int(std::max(2.0,delta*ELLIPSE_WIDTH))),angle);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::checkRowColumn(const std::vector<cv::Point2f> &points)
|
||
|
{
|
||
|
if(points.size() < 4)
|
||
|
{
|
||
|
if(points.size() == 3)
|
||
|
return true;
|
||
|
else
|
||
|
return false;
|
||
|
}
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin();
|
||
|
std::vector<cv::Point2f>::const_iterator iter2 = iter+1;
|
||
|
std::vector<cv::Point2f>::const_iterator iter3 = iter2+1;
|
||
|
std::vector<cv::Point2f>::const_iterator iter4 = iter3+1;
|
||
|
Ellipse ellipse;
|
||
|
if(!estimateSearchArea(*iter4,*iter3,*iter2,CORNERS_SEARCH*3,ellipse))
|
||
|
return false;
|
||
|
if(!ellipse.contains(*iter))
|
||
|
return false;
|
||
|
|
||
|
std::vector<cv::Point2f>::const_iterator iter5 = iter4+1;
|
||
|
for(;iter5 != points.end();++iter5)
|
||
|
{
|
||
|
if(!estimateSearchArea(*iter2,*iter3,*iter4,CORNERS_SEARCH,ellipse,&(*iter)))
|
||
|
return false;
|
||
|
if(!ellipse.contains(*iter5))
|
||
|
return false;
|
||
|
iter = iter2;
|
||
|
iter2 = iter3;
|
||
|
iter3 = iter4;
|
||
|
iter4 = iter5;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
cv::Point2f &Chessboard::Board::getCorner(int _row,int _col)
|
||
|
{
|
||
|
int _rows = int(rowCount());
|
||
|
int _cols = int(colCount());
|
||
|
if(_row >= _rows || _col >= _cols)
|
||
|
CV_Error(Error::StsBadArg,"out of bound");
|
||
|
if(_row == 0)
|
||
|
{
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
int count = 0;
|
||
|
do
|
||
|
{
|
||
|
if(count == _col)
|
||
|
return *(*iter);
|
||
|
++count;
|
||
|
}while(iter.right());
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Cell *row_start = top_left;
|
||
|
int count = 1;
|
||
|
do
|
||
|
{
|
||
|
if(count == _row)
|
||
|
{
|
||
|
PointIter iter(row_start,BOTTOM_LEFT);
|
||
|
int count2 = 0;
|
||
|
do
|
||
|
{
|
||
|
if(count2 == _col)
|
||
|
return *(*iter);
|
||
|
++count2;
|
||
|
}while(iter.right());
|
||
|
}
|
||
|
++count;
|
||
|
row_start = row_start->bottom;
|
||
|
}while(_row);
|
||
|
}
|
||
|
CV_Error(Error::StsInternal,"cannot find corner");
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::isCellBlack(int row,int col)const
|
||
|
{
|
||
|
return getCell(row,col)->black;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::isCellEmpty(int row,int col)
|
||
|
{
|
||
|
return getCell(row,col)->empty();
|
||
|
}
|
||
|
|
||
|
Chessboard::Board::Cell* Chessboard::Board::getCell(int row,int col)
|
||
|
{
|
||
|
const Cell *cell = const_cast<const Board*>(this)->getCell(row,col);
|
||
|
return const_cast<Cell*>(cell);
|
||
|
}
|
||
|
|
||
|
const Chessboard::Board::Cell* Chessboard::Board::getCell(int row,int col)const
|
||
|
{
|
||
|
if(row > rows-1 || row < 0 || col > cols-1 || col < 0)
|
||
|
CV_Error(Error::StsBadArg,"out of bound");
|
||
|
PointIter p_iter(top_left,BOTTOM_RIGHT);
|
||
|
for(int i=0; i< row; p_iter.bottom(),++i);
|
||
|
for(int i=0; i< col; p_iter.right(),++i);
|
||
|
return p_iter.getCell();
|
||
|
}
|
||
|
|
||
|
|
||
|
bool Chessboard::Board::isEmpty()const
|
||
|
{
|
||
|
return cells.empty();
|
||
|
}
|
||
|
|
||
|
size_t Chessboard::Board::colCount()const
|
||
|
{
|
||
|
return cols;
|
||
|
}
|
||
|
|
||
|
size_t Chessboard::Board::rowCount()const
|
||
|
{
|
||
|
return rows;
|
||
|
}
|
||
|
|
||
|
cv::Size Chessboard::Board::getSize()const
|
||
|
{
|
||
|
return cv::Size(int(colCount()),int(rowCount()));
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::drawEllipses(const std::vector<Ellipse> &ellipses)
|
||
|
{
|
||
|
// currently there is no global image find way to store global image
|
||
|
// without polluting namespace
|
||
|
if(ellipses.empty())
|
||
|
return; //avoid compiler warning
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
cv::Mat img;
|
||
|
draw(debug_image,img);
|
||
|
std::vector<Ellipse>::iterator iter;
|
||
|
for(;iter != ellipses.end();++iter)
|
||
|
iter->draw(img);
|
||
|
cv::imshow("chessboard",img);
|
||
|
cv::waitKey(-1);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
void Chessboard::Board::growLeft()
|
||
|
{
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Point2f pt;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.right();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.right();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
if(iter2.right())
|
||
|
estimatePoint(**iter2,*p2,*p1,*p0,pt);
|
||
|
else
|
||
|
estimatePoint(*p2,*p1,*p0,pt);
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
while(iter.bottom());
|
||
|
addColumnLeft(points);
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::growLeft(const cv::Mat &map,cv::flann::Index &flann_index)
|
||
|
{
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
std::vector<Ellipse> ellipses;
|
||
|
#endif
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"growLeft: Board is empty");
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
std::vector<cv::Point2f> points;
|
||
|
int count = 0;
|
||
|
Ellipse ellipse;
|
||
|
cv::Point2f pt;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.right();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.right();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
cv::Point2f *p3 = NULL;
|
||
|
if(iter2.right())
|
||
|
p3 = *iter2;
|
||
|
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
|
||
|
return false;
|
||
|
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
|
||
|
if(pt == *p0)
|
||
|
{
|
||
|
++count;
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
}
|
||
|
else if(result != 0)
|
||
|
{
|
||
|
points.push_back(pt);
|
||
|
if(result < 0)
|
||
|
++count;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++count;
|
||
|
if(pt.x != pt.x) // NaN check
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
else
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
ellipses.push_back(ellipse);
|
||
|
#endif
|
||
|
}
|
||
|
while(iter.bottom());
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
drawEllipses(ellipses);
|
||
|
#endif
|
||
|
if(points.size()-count <= 2)
|
||
|
return false;
|
||
|
if(count > points.size()*0.5 || !checkRowColumn(points))
|
||
|
return false;
|
||
|
addColumnLeft(points);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::growTop()
|
||
|
{
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Point2f pt;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.bottom();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.bottom();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
if(iter2.bottom())
|
||
|
estimatePoint(**iter2,*p2,*p1,*p0,pt);
|
||
|
else
|
||
|
estimatePoint(*p2,*p1,*p0,pt);
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
while(iter.right());
|
||
|
addRowTop(points);
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::growTop(const cv::Mat &map,cv::flann::Index &flann_index)
|
||
|
{
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
std::vector<Ellipse> ellipses;
|
||
|
#endif
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
std::vector<cv::Point2f> points;
|
||
|
int count = 0;
|
||
|
Ellipse ellipse;
|
||
|
cv::Point2f pt;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.bottom();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.bottom();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
cv::Point2f *p3 = NULL;
|
||
|
if(iter2.bottom())
|
||
|
p3 = *iter2;
|
||
|
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
|
||
|
return false;
|
||
|
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
|
||
|
if(pt == *p0)
|
||
|
{
|
||
|
++count;
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
}
|
||
|
else if(result != 0)
|
||
|
{
|
||
|
points.push_back(pt);
|
||
|
if(result < 0)
|
||
|
++count;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++count;
|
||
|
if(pt.x != pt.x) // NaN check
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
else
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
ellipses.push_back(ellipse);
|
||
|
#endif
|
||
|
}
|
||
|
while(iter.right());
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
drawEllipses(ellipses);
|
||
|
#endif
|
||
|
if(count > points.size()*0.5 || !checkRowColumn(points))
|
||
|
return false;
|
||
|
addRowTop(points);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::growRight()
|
||
|
{
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
PointIter iter(top_left,TOP_RIGHT);
|
||
|
while(iter.right());
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Point2f pt;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.left();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.left();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
if(iter2.left())
|
||
|
estimatePoint(**iter2,*p2,*p1,*p0,pt);
|
||
|
else
|
||
|
estimatePoint(*p2,*p1,*p0,pt);
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
while(iter.bottom());
|
||
|
addColumnRight(points);
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::growRight(const cv::Mat &map,cv::flann::Index &flann_index)
|
||
|
{
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
std::vector<Ellipse> ellipses;
|
||
|
#endif
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
|
||
|
PointIter iter(top_left,TOP_RIGHT);
|
||
|
while(iter.right());
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Point2f pt;
|
||
|
Ellipse ellipse;
|
||
|
int count = 0;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.left();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.left();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
cv::Point2f *p3 = NULL;
|
||
|
if(iter2.left())
|
||
|
p3 = *iter2;
|
||
|
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
|
||
|
return false;
|
||
|
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
|
||
|
if(pt == *p0)
|
||
|
{
|
||
|
++count;
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
}
|
||
|
else if(result != 0)
|
||
|
{
|
||
|
points.push_back(pt);
|
||
|
if(result < 0)
|
||
|
++count;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++count;
|
||
|
if(pt.x != pt.x) // NaN check
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
else
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
ellipses.push_back(ellipse);
|
||
|
#endif
|
||
|
}
|
||
|
while(iter.bottom());
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
drawEllipses(ellipses);
|
||
|
#endif
|
||
|
if(count > points.size()*0.5 || !checkRowColumn(points))
|
||
|
return false;
|
||
|
addColumnRight(points);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::growBottom()
|
||
|
{
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
|
||
|
PointIter iter(top_left,BOTTOM_LEFT);
|
||
|
while(iter.bottom());
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Point2f pt;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.top();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.top();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
if(iter2.top())
|
||
|
estimatePoint(**iter2,*p2,*p1,*p0,pt);
|
||
|
else
|
||
|
estimatePoint(*p2,*p1,*p0,pt);
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
while(iter.right());
|
||
|
addRowBottom(points);
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::growBottom(const cv::Mat &map,cv::flann::Index &flann_index)
|
||
|
{
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
std::vector<Ellipse> ellipses;
|
||
|
#endif
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
|
||
|
PointIter iter(top_left,BOTTOM_LEFT);
|
||
|
while(iter.bottom());
|
||
|
std::vector<cv::Point2f> points;
|
||
|
cv::Point2f pt;
|
||
|
Ellipse ellipse;
|
||
|
int count = 0;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
cv::Point2f *p0 = *iter2;
|
||
|
iter2.top();
|
||
|
cv::Point2f *p1 = *iter2;
|
||
|
iter2.top();
|
||
|
cv::Point2f *p2 = *iter2;
|
||
|
cv::Point2f *p3 = NULL;
|
||
|
if(iter2.top())
|
||
|
p3 = *iter2;
|
||
|
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
|
||
|
return false;
|
||
|
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
|
||
|
if(pt == *p0)
|
||
|
{
|
||
|
++count;
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
}
|
||
|
else if(result != 0)
|
||
|
{
|
||
|
points.push_back(pt);
|
||
|
if(result < 0)
|
||
|
++count;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++count;
|
||
|
if(pt.x != pt.x) // NaN check
|
||
|
points.push_back(ellipse.getCenter());
|
||
|
else
|
||
|
points.push_back(pt);
|
||
|
}
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
ellipses.push_back(ellipse);
|
||
|
#endif
|
||
|
}
|
||
|
while(iter.right());
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
drawEllipses(ellipses);
|
||
|
#endif
|
||
|
if(count > points.size()*0.5 || !checkRowColumn(points))
|
||
|
return false;
|
||
|
addRowBottom(points);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::addColumnLeft(const std::vector<cv::Point2f> &points)
|
||
|
{
|
||
|
if(points.empty() || points.size() != rowCount())
|
||
|
CV_Error(Error::StsBadArg,"wrong number of points");
|
||
|
|
||
|
int offset = int(cells.size());
|
||
|
cells.resize(offset+points.size()-1);
|
||
|
for(int i = offset;i < (int) cells.size();++i)
|
||
|
cells[i] = new Cell();
|
||
|
corners.push_back(new cv::Point2f(points.front()));
|
||
|
|
||
|
Cell *cell = top_left;
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
|
||
|
for(int pos=offset;iter != points.end();++iter,cell = cell->bottom,++pos)
|
||
|
{
|
||
|
cell->left = cells[pos];
|
||
|
cells[pos]->black = !cell->black;
|
||
|
if(pos != offset)
|
||
|
cells[pos]->top = cells[pos-1];
|
||
|
cells[pos]->right = cell;
|
||
|
if(pos +1 < (int)cells.size())
|
||
|
cells[pos]->bottom= cells[pos+1];
|
||
|
cells[pos]->top_left = corners.back();
|
||
|
corners.push_back(new cv::Point2f(*iter));
|
||
|
cells[pos]->bottom_left = corners.back();
|
||
|
cells[pos]->top_right=cell->top_left;
|
||
|
cells[pos]->bottom_right=cell->bottom_left;
|
||
|
}
|
||
|
top_left = cells[offset];
|
||
|
++cols;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::addRowTop(const std::vector<cv::Point2f> &points)
|
||
|
{
|
||
|
if(points.empty() || points.size() != colCount())
|
||
|
CV_Error(Error::StsBadArg,"wrong number of points");
|
||
|
|
||
|
int offset = int(cells.size());
|
||
|
cells.resize(offset+points.size()-1);
|
||
|
for(int i = offset;i < (int) cells.size();++i)
|
||
|
cells[i] = new Cell();
|
||
|
corners.push_back(new cv::Point2f(points.front()));
|
||
|
|
||
|
Cell *cell = top_left;
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
|
||
|
for(int pos=offset;iter != points.end();++iter,cell = cell->right,++pos)
|
||
|
{
|
||
|
cell->top = cells[pos];
|
||
|
cells[pos]->black = !cell->black;
|
||
|
if(pos != offset)
|
||
|
cells[pos]->left= cells[pos-1];
|
||
|
cells[pos]->bottom= cell;
|
||
|
if(pos +1 <(int) cells.size())
|
||
|
cells[pos]->right= cells[pos+1];
|
||
|
|
||
|
cells[pos]->top_left = corners.back();
|
||
|
corners.push_back(new cv::Point2f(*iter));
|
||
|
cells[pos]->top_right = corners.back();
|
||
|
cells[pos]->bottom_left = cell->top_left;
|
||
|
cells[pos]->bottom_right = cell->top_right;
|
||
|
}
|
||
|
top_left = cells[offset];
|
||
|
++rows;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::addColumnRight(const std::vector<cv::Point2f> &points)
|
||
|
{
|
||
|
if(points.empty() || points.size() != rowCount())
|
||
|
CV_Error(Error::StsBadArg,"wrong number of points");
|
||
|
|
||
|
int offset = int(cells.size());
|
||
|
cells.resize(offset+points.size()-1);
|
||
|
for(int i = offset;i < (int) cells.size();++i)
|
||
|
cells[i] = new Cell();
|
||
|
corners.push_back(new cv::Point2f(points.front()));
|
||
|
|
||
|
Cell *cell = top_left;
|
||
|
for(;cell->right;cell = cell->right);
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
|
||
|
for(int pos=offset;iter != points.end();++iter,cell = cell->bottom,++pos)
|
||
|
{
|
||
|
cell->right = cells[pos];
|
||
|
cells[pos]->black = !cell->black;
|
||
|
if(pos != offset)
|
||
|
cells[pos]->top= cells[pos-1];
|
||
|
cells[pos]->left = cell;
|
||
|
if(pos +1 <(int) cells.size())
|
||
|
cells[pos]->bottom= cells[pos+1];
|
||
|
|
||
|
cells[pos]->top_right = corners.back();
|
||
|
corners.push_back(new cv::Point2f(*iter));
|
||
|
cells[pos]->bottom_right = corners.back();
|
||
|
cells[pos]->top_left =cell->top_right;
|
||
|
cells[pos]->bottom_left =cell->bottom_right;
|
||
|
}
|
||
|
++cols;
|
||
|
}
|
||
|
|
||
|
void Chessboard::Board::addRowBottom(const std::vector<cv::Point2f> &points)
|
||
|
{
|
||
|
if(points.empty() || points.size() != colCount())
|
||
|
CV_Error(Error::StsBadArg,"wrong number of points");
|
||
|
|
||
|
int offset = int(cells.size());
|
||
|
cells.resize(offset+points.size()-1);
|
||
|
for(int i = offset;i < (int) cells.size();++i)
|
||
|
cells[i] = new Cell();
|
||
|
corners.push_back(new cv::Point2f(points.front()));
|
||
|
|
||
|
Cell *cell = top_left;
|
||
|
for(;cell->bottom;cell = cell->bottom);
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
|
||
|
for(int pos=offset;iter != points.end();++iter,cell = cell->right,++pos)
|
||
|
{
|
||
|
cell->bottom = cells[pos];
|
||
|
cells[pos]->black = !cell->black;
|
||
|
if(pos != offset)
|
||
|
cells[pos]->left = cells[pos-1];
|
||
|
cells[pos]->top = cell;
|
||
|
if(pos +1 < (int)cells.size())
|
||
|
cells[pos]->right= cells[pos+1];
|
||
|
|
||
|
cells[pos]->bottom_left = corners.back();
|
||
|
corners.push_back(new cv::Point2f(*iter));
|
||
|
cells[pos]->bottom_right = corners.back();
|
||
|
cells[pos]->top_left = cell->bottom_left;
|
||
|
cells[pos]->top_right = cell->bottom_right;
|
||
|
}
|
||
|
++rows;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::checkUnique()const
|
||
|
{
|
||
|
std::vector<cv::Point2f> points = getCorners(false);
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin();
|
||
|
for(;iter != points.end();++iter)
|
||
|
{
|
||
|
std::vector<cv::Point2f>::const_iterator iter2 = iter+1;
|
||
|
for(;iter2 != points.end();++iter2)
|
||
|
{
|
||
|
if(*iter == *iter2)
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int Chessboard::Board::validateCorners(const cv::Mat &data,cv::flann::Index &flann_index,const cv::Mat &h,float min_response)
|
||
|
{
|
||
|
// TODO check input
|
||
|
if(isEmpty() || h.empty())
|
||
|
return 0;
|
||
|
int count = 0; int icol = 0;
|
||
|
// first row
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
cv::Point2f point;
|
||
|
do
|
||
|
{
|
||
|
if((*iter)->x == (*iter)->x)
|
||
|
++count;
|
||
|
else
|
||
|
{
|
||
|
Ellipse ellipse = estimateSearchArea(h,0,icol,0.4F);
|
||
|
float result = findMaxPoint(flann_index,data,ellipse,white_angle,black_angle,point);
|
||
|
if(fabs(result) >= min_response)
|
||
|
{
|
||
|
++count;
|
||
|
**iter = point;
|
||
|
}
|
||
|
}
|
||
|
++icol;
|
||
|
}while(iter.right());
|
||
|
|
||
|
// all other rows
|
||
|
int irow = 1;
|
||
|
Cell *row = top_left;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(row,BOTTOM_LEFT);
|
||
|
icol = 0;
|
||
|
do
|
||
|
{
|
||
|
if((*iter2)->x == (*iter2)->x)
|
||
|
++count;
|
||
|
else
|
||
|
{
|
||
|
Ellipse ellipse = estimateSearchArea(h,irow,icol,0.4F);
|
||
|
if(min_response <= findMaxPoint(flann_index,data,ellipse,white_angle,black_angle,point))
|
||
|
{
|
||
|
++count;
|
||
|
**iter2 = point;
|
||
|
}
|
||
|
}
|
||
|
++icol;
|
||
|
}while(iter2.right());
|
||
|
row = row->bottom;
|
||
|
++irow;
|
||
|
}while(row);
|
||
|
|
||
|
// check that there are no points with the same coordinate
|
||
|
std::vector<cv::Point2f> points = getCorners(false);
|
||
|
std::vector<cv::Point2f>::const_iterator iter1 = points.begin();
|
||
|
for(;iter1 != points.end();++iter1)
|
||
|
{
|
||
|
// we do not have to check for NaN because of getCorners(flase)
|
||
|
std::vector<cv::Point2f>::const_iterator iter2 = iter1+1;
|
||
|
for(;iter2 != points.end();++iter2)
|
||
|
if(*iter1 == *iter2)
|
||
|
return -1; // one corner is there twice -> not valid configuration
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::validateContour()const
|
||
|
{
|
||
|
std::vector<cv::Point2f> contour = getContour();
|
||
|
if(contour.size() != 4)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
cv::Point2f n1 = contour[1]-contour[0];
|
||
|
cv::Point2f n2 = contour[2]-contour[1];
|
||
|
cv::Point2f n3 = contour[3]-contour[2];
|
||
|
cv::Point2f n4 = contour[0]-contour[3];
|
||
|
n1 = n1/cv::norm(n1);
|
||
|
n2 = n2/cv::norm(n2);
|
||
|
n3 = n3/cv::norm(n3);
|
||
|
n4 = n4/cv::norm(n4);
|
||
|
// a > b => cos(a) < cos(b)
|
||
|
if(fabs(n1.dot(n2)) > MIN_COS_ANGLE||
|
||
|
fabs(n2.dot(n3)) > MIN_COS_ANGLE||
|
||
|
fabs(n3.dot(n4)) > MIN_COS_ANGLE||
|
||
|
fabs(n4.dot(n1)) > MIN_COS_ANGLE)
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
std::vector<cv::Point2f> Chessboard::Board::getContour()const
|
||
|
{
|
||
|
std::vector<cv::Point2f> points;
|
||
|
if(isEmpty())
|
||
|
return points;
|
||
|
|
||
|
//find start cell part of the contour
|
||
|
Cell* start_cell = NULL;
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(iter);
|
||
|
do
|
||
|
{
|
||
|
if(!iter2.getCell()->empty())
|
||
|
{
|
||
|
start_cell = iter2.getCell();
|
||
|
iter = iter2;
|
||
|
break;
|
||
|
}
|
||
|
}while(iter2.right());
|
||
|
}while(!start_cell && iter.bottom());
|
||
|
if(start_cell == NULL)
|
||
|
return points;
|
||
|
|
||
|
// trace contour
|
||
|
const cv::Point2f *start_pt = *iter;
|
||
|
int mode = 2; int last = -1;
|
||
|
do
|
||
|
{
|
||
|
PointIter current_iter(iter);
|
||
|
switch(mode)
|
||
|
{
|
||
|
case 1: // top
|
||
|
if(iter.top(true))
|
||
|
{
|
||
|
if(last != 1)
|
||
|
points.push_back(**current_iter);
|
||
|
mode = 4;
|
||
|
last = 1;
|
||
|
break;
|
||
|
}
|
||
|
case 2: // right
|
||
|
if(iter.right(true))
|
||
|
{
|
||
|
if(last != 2)
|
||
|
points.push_back(**current_iter);
|
||
|
mode = 1;
|
||
|
last = 2;
|
||
|
break;
|
||
|
}
|
||
|
case 3: // bottom
|
||
|
if(iter.bottom(true))
|
||
|
{
|
||
|
if(last != 3)
|
||
|
points.push_back(**current_iter);
|
||
|
mode = 2;
|
||
|
last = 3;
|
||
|
break;
|
||
|
}
|
||
|
case 4: // left
|
||
|
if(iter.left(true))
|
||
|
{
|
||
|
if(last != 4)
|
||
|
points.push_back(**current_iter);
|
||
|
mode = 3;
|
||
|
last = 4;
|
||
|
break;
|
||
|
}
|
||
|
mode = 1;
|
||
|
break;
|
||
|
default:
|
||
|
CV_Error(Error::StsInternal,"cannot retrieve contour");
|
||
|
}
|
||
|
}while(*iter != start_pt);
|
||
|
return points;
|
||
|
}
|
||
|
|
||
|
|
||
|
cv::Mat Chessboard::Board::estimateHomography(cv::Rect rect,int field_size)const
|
||
|
{
|
||
|
int _rows = int(rowCount());
|
||
|
int _cols = int(colCount());
|
||
|
if(_rows < 3 || _cols < 3)
|
||
|
return cv::Mat();
|
||
|
if(rect.width <= 0)
|
||
|
rect.width= _cols;
|
||
|
if(rect.height <= 0)
|
||
|
rect.height= _rows;
|
||
|
|
||
|
int col_end = std::min(rect.x+rect.width,_cols);
|
||
|
int row_end = std::min(rect.y+rect.height,_rows);
|
||
|
std::vector<cv::Point2f> points = getCorners(true);
|
||
|
|
||
|
// build src and dst
|
||
|
std::vector<cv::Point2f> src,dst;
|
||
|
for(int row =rect.y;row < row_end;++row)
|
||
|
{
|
||
|
for(int col=rect.x;col <col_end;++col)
|
||
|
{
|
||
|
const cv::Point2f &pt = points[row*_rows+col];
|
||
|
if(pt.x != pt.x) // NaN check
|
||
|
continue;
|
||
|
src.push_back(cv::Point2f(float(field_size)*(col+1),float(field_size)*(row+1)));
|
||
|
dst.push_back(pt);
|
||
|
}
|
||
|
}
|
||
|
if(dst.size() < 4)
|
||
|
return cv::Mat();
|
||
|
return cv::findHomography(src, dst,cv::LMEDS);
|
||
|
}
|
||
|
|
||
|
cv::Mat Chessboard::Board::estimateHomography(int field_size)const
|
||
|
{
|
||
|
int _rows = int(rowCount());
|
||
|
int _cols = int(colCount());
|
||
|
if(_rows < 3 || _cols < 3)
|
||
|
return cv::Mat();
|
||
|
std::vector<cv::Point2f> src,dst;
|
||
|
std::vector<cv::Point2f> points = getCorners(true);
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin();
|
||
|
for(int row =0;row < _rows;++row)
|
||
|
{
|
||
|
for(int col=0;col <_cols;++col,++iter)
|
||
|
{
|
||
|
const cv::Point2f &pt = *iter;
|
||
|
if(pt.x == pt.x)
|
||
|
{
|
||
|
src.push_back(cv::Point2f(float(field_size)*(col+1),float(field_size)*(row+1)));
|
||
|
dst.push_back(pt);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if(dst.size() < 4)
|
||
|
return cv::Mat();
|
||
|
return cv::findHomography(src, dst);
|
||
|
}
|
||
|
|
||
|
bool Chessboard::Board::findNextPoint(cv::flann::Index &index,const cv::Mat &data,
|
||
|
const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3,
|
||
|
float white_angle,float black_angle,float min_response,cv::Point2f &point)
|
||
|
{
|
||
|
Ellipse ellipse;
|
||
|
if(!estimateSearchArea(pt1,pt2,pt3,0.4F,ellipse))
|
||
|
return false;
|
||
|
if(min_response > fabs(findMaxPoint(index,data,ellipse,white_angle,black_angle,point)))
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int Chessboard::Board::grow(const cv::Mat &map,cv::flann::Index &flann_index)
|
||
|
{
|
||
|
if(isEmpty())
|
||
|
CV_Error(Error::StsInternal,"Board is empty");
|
||
|
bool bleft = true;
|
||
|
bool btop = true;
|
||
|
bool bright = true;
|
||
|
bool bbottom= true;
|
||
|
int count = 0;
|
||
|
do
|
||
|
{
|
||
|
// grow to the left
|
||
|
if(bleft)
|
||
|
{
|
||
|
bleft = growLeft(map,flann_index);
|
||
|
if(bleft)
|
||
|
++count;
|
||
|
}
|
||
|
if(btop)
|
||
|
{
|
||
|
btop= growTop(map,flann_index);
|
||
|
if(btop)
|
||
|
++count;
|
||
|
}
|
||
|
if(bright)
|
||
|
{
|
||
|
bright= growRight(map,flann_index);
|
||
|
if(bright)
|
||
|
++count;
|
||
|
}
|
||
|
if(bbottom)
|
||
|
{
|
||
|
bbottom= growBottom(map,flann_index);
|
||
|
if(bbottom)
|
||
|
++count;
|
||
|
}
|
||
|
}while(bleft || btop || bright || bbottom );
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
std::map<int,int> Chessboard::Board::getMapping()const
|
||
|
{
|
||
|
std::map<int,int> map;
|
||
|
std::vector<cv::Point2f> points = getCorners();
|
||
|
std::vector<cv::Point2f>::iterator iter = points.begin();
|
||
|
for(int idx1=0,idx2=0;iter != points.end();++iter,++idx1)
|
||
|
{
|
||
|
if(iter->x != iter->x) // NaN check
|
||
|
continue;
|
||
|
map[idx1] = idx2++;
|
||
|
}
|
||
|
return map;
|
||
|
}
|
||
|
|
||
|
std::vector<cv::Point2f> Chessboard::Board::getCorners(bool ball)const
|
||
|
{
|
||
|
std::vector<cv::Point2f> points;
|
||
|
if(isEmpty())
|
||
|
return points;
|
||
|
|
||
|
// first row
|
||
|
PointIter iter(top_left,TOP_LEFT);
|
||
|
do
|
||
|
{
|
||
|
if(ball || !iter.isNaN())
|
||
|
points.push_back(*(*iter));
|
||
|
}while(iter.right());
|
||
|
|
||
|
// all other rows
|
||
|
Cell *row = top_left;
|
||
|
do
|
||
|
{
|
||
|
PointIter iter2(row,BOTTOM_LEFT);
|
||
|
do
|
||
|
{
|
||
|
if(ball || !iter2.isNaN())
|
||
|
points.push_back(*(*iter2));
|
||
|
}while(iter2.right());
|
||
|
row = row->bottom;
|
||
|
}while(row);
|
||
|
return points;
|
||
|
}
|
||
|
|
||
|
std::vector<cv::KeyPoint> Chessboard::Board::getKeyPoints(bool ball)const
|
||
|
{
|
||
|
std::vector<cv::KeyPoint> keypoints;
|
||
|
std::vector<cv::Point2f> points = getCorners(ball);
|
||
|
std::vector<cv::Point2f>::const_iterator iter = points.begin();
|
||
|
for(;iter != points.end();++iter)
|
||
|
keypoints.push_back(cv::KeyPoint(iter->x,iter->y,1));
|
||
|
return keypoints;
|
||
|
}
|
||
|
|
||
|
Chessboard::Chessboard(const Parameters ¶)
|
||
|
{
|
||
|
reconfigure(para);
|
||
|
}
|
||
|
|
||
|
void Chessboard::reconfigure(const Parameters &config)
|
||
|
{
|
||
|
parameters = config;
|
||
|
}
|
||
|
|
||
|
Chessboard::Parameters Chessboard::getPara()const
|
||
|
{
|
||
|
return parameters;
|
||
|
}
|
||
|
|
||
|
Chessboard::~Chessboard()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void Chessboard::findKeyPoints(const cv::Mat& image, std::vector<KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,
|
||
|
std::vector<std::vector<float> > &angles ,const cv::Mat& mask)const
|
||
|
{
|
||
|
keypoints.clear();
|
||
|
angles.clear();
|
||
|
vector<KeyPoint> keypoints_temp;
|
||
|
FastX::Parameters para;
|
||
|
|
||
|
para.branches = 2; // this is always the case for checssboard corners
|
||
|
para.strength = 10; // minimal threshold
|
||
|
para.resolution = float(M_PI*0.25); // this gives the best results taking interpolation into account
|
||
|
para.filter = 1;
|
||
|
para.super_resolution = parameters.super_resolution;
|
||
|
para.min_scale = parameters.min_scale;
|
||
|
para.max_scale = parameters.max_scale;
|
||
|
|
||
|
FastX detector(para);
|
||
|
std::vector<cv::Mat> rotated_images;
|
||
|
detector.detectImpl(image,rotated_images,feature_maps,mask);
|
||
|
|
||
|
//calculate seed chessboard corners
|
||
|
detector.findKeyPoints(feature_maps,keypoints_temp,mask);
|
||
|
|
||
|
//sort points and limit number
|
||
|
int max_seeds = std::min((int)keypoints_temp.size(),parameters.max_points);
|
||
|
if(max_seeds < 9)
|
||
|
return;
|
||
|
|
||
|
std::partial_sort(keypoints_temp.begin(),keypoints_temp.begin()+max_seeds-1,
|
||
|
keypoints_temp.end(),sortKeyPoint);
|
||
|
keypoints_temp.resize(max_seeds);
|
||
|
std::vector<std::vector<float> > angles_temp = detector.calcAngles(rotated_images,keypoints_temp);
|
||
|
|
||
|
// filter out keypoints which are not symmetric
|
||
|
std::vector<KeyPoint>::iterator iter1 = keypoints_temp.begin();
|
||
|
std::vector<std::vector<float> >::const_iterator iter2 = angles_temp.begin();
|
||
|
for(;iter1 != keypoints_temp.end();++iter1,++iter2)
|
||
|
{
|
||
|
cv::KeyPoint &pt = *iter1;
|
||
|
const std::vector<float> &angles_i3 = *iter2;
|
||
|
if(angles_i3.size() != 2)// || pt.response < noise)
|
||
|
continue;
|
||
|
int result = testPointSymmetry(image,pt.pt,pt.size*0.7F,std::max(10.0F,sqrt(pt.response)+0.5F*pt.size));
|
||
|
if(result > MAX_SYMMETRY_ERRORS)
|
||
|
continue;
|
||
|
else if(result > 3)
|
||
|
pt.response = - pt.response;
|
||
|
angles.push_back(angles_i3);
|
||
|
keypoints.push_back(pt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv::Mat Chessboard::buildData(const std::vector<KeyPoint>& keypoints)const
|
||
|
{
|
||
|
cv::Mat data(int(keypoints.size()),4,CV_32FC1); // x + y + angle + strength
|
||
|
std::vector<cv::KeyPoint>::const_iterator iter = keypoints.begin();
|
||
|
float *val = reinterpret_cast<float*>(data.data);
|
||
|
for(;iter != keypoints.end();++iter)
|
||
|
{
|
||
|
(*val++) = iter->pt.x;
|
||
|
(*val++) = iter->pt.y;
|
||
|
(*val++) = float(2.0*M_PI-iter->angle/180.0*M_PI);
|
||
|
(*val++) = iter->response;
|
||
|
}
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
std::vector<cv::KeyPoint> Chessboard::getInitialPoints(cv::flann::Index &flann_index,const cv::Mat &data,const cv::KeyPoint ¢er,float white_angle,float black_angle,float min_response)const
|
||
|
{
|
||
|
CV_CheckTypeEQ(data.type(), CV_32FC1, "Unsupported source type");
|
||
|
if(data.cols != 4)
|
||
|
CV_Error(Error::StsBadArg,"wrong data format");
|
||
|
|
||
|
std::vector<float> query,dists;
|
||
|
std::vector<int> indices;
|
||
|
query.resize(2); query[0] = center.pt.x; query[1] = center.pt.y;
|
||
|
flann_index.knnSearch(query,indices,dists,21,cv::flann::SearchParams(32));
|
||
|
|
||
|
// collect all points having a similar angle and response
|
||
|
std::vector<cv::KeyPoint> points;
|
||
|
std::vector<int>::const_iterator ids_iter = indices.begin()+1; // first point is center
|
||
|
points.push_back(center);
|
||
|
for(;ids_iter != indices.end();++ids_iter)
|
||
|
{
|
||
|
// TODO do more angle tests
|
||
|
// test only one angle against the stored one
|
||
|
const float &response = data.at<float>(*ids_iter,3);
|
||
|
if(fabs(response) < min_response)
|
||
|
continue;
|
||
|
const float &angle = data.at<float>(*ids_iter,2);
|
||
|
float angle_temp = fabs(angle-white_angle);
|
||
|
if(angle_temp > M_PI*0.5)
|
||
|
angle_temp = float(fabs(angle_temp-M_PI));
|
||
|
if(angle_temp > MAX_ANGLE)
|
||
|
{
|
||
|
angle_temp = fabs(angle-black_angle);
|
||
|
if(angle_temp > M_PI*0.5)
|
||
|
angle_temp = float(fabs(angle_temp-M_PI));
|
||
|
if(angle_temp >MAX_ANGLE)
|
||
|
continue;
|
||
|
}
|
||
|
points.push_back(cv::KeyPoint(data.at<float>(*ids_iter,0),data.at<float>(*ids_iter,1),center.size,angle,response));
|
||
|
}
|
||
|
return points;
|
||
|
}
|
||
|
|
||
|
Chessboard::BState Chessboard::generateBoards(cv::flann::Index &flann_index,const cv::Mat &data,
|
||
|
const cv::KeyPoint ¢er,float white_angle,float black_angle,float min_response,const cv::Mat& img,
|
||
|
std::vector<Chessboard::Board> &boards)const
|
||
|
{
|
||
|
// collect all points having a similar angle
|
||
|
std::vector<cv::KeyPoint> kpoints= getInitialPoints(flann_index,data,center,white_angle,black_angle,min_response);
|
||
|
if(kpoints.size() < 5)
|
||
|
return MISSING_POINTS;
|
||
|
|
||
|
if(!img.empty())
|
||
|
{
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
cv::Mat out;
|
||
|
cv::drawKeypoints(img,kpoints,out,cv::Scalar(0,0,255,255),4);
|
||
|
std::vector<cv::KeyPoint> temp;
|
||
|
temp.push_back(kpoints.front());
|
||
|
cv::drawKeypoints(out,temp,out,cv::Scalar(0,255,0,255),4);
|
||
|
cv::imshow("chessboard",out);
|
||
|
cv::waitKey(-1);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// use angles to filter out points
|
||
|
std::vector<cv::KeyPoint> points;
|
||
|
cv::Vec2f n1(cos(white_angle),-sin(white_angle));
|
||
|
cv::Vec2f n2(cos(black_angle),-sin(black_angle));
|
||
|
std::vector<cv::KeyPoint>::const_iterator iter1 = kpoints.begin()+1; // first point is center
|
||
|
for(;iter1 != kpoints.end();++iter1)
|
||
|
{
|
||
|
// calc angle
|
||
|
cv::Vec2f vec(iter1->pt-center.pt);
|
||
|
vec = vec/cv::norm(vec);
|
||
|
if(fabs(vec.dot(n1)) < 0.96 && fabs(vec.dot(n2)) < 0.96) //check that angle is bigger than 15°
|
||
|
points.push_back(*iter1);
|
||
|
}
|
||
|
|
||
|
// genreate pairs those connection goes through the center
|
||
|
std::vector<std::pair<cv::KeyPoint,cv::KeyPoint> > pairs;
|
||
|
iter1 = points.begin();
|
||
|
for(;iter1 != points.end();++iter1)
|
||
|
{
|
||
|
std::vector<cv::KeyPoint>::const_iterator iter2 = iter1+1;
|
||
|
for(;iter2 != points.end();++iter2)
|
||
|
{
|
||
|
if(isPointOnLine(iter1->pt,iter2->pt,center.pt,0.97F))
|
||
|
{
|
||
|
if(cv::norm(iter1->pt) < cv::norm(iter2->pt))
|
||
|
pairs.push_back(std::make_pair(*iter1,*iter2));
|
||
|
else
|
||
|
pairs.push_back(std::make_pair(*iter2,*iter1));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// generate all possible combinations consisting of two pairs
|
||
|
if(pairs.size() < 2)
|
||
|
return MISSING_PAIRS;
|
||
|
std::vector<std::pair<cv::KeyPoint,cv::KeyPoint> >::iterator iter_pair1 = pairs.begin();
|
||
|
|
||
|
BState best_state = MISSING_PAIRS;
|
||
|
for(;iter_pair1 != pairs.end();++iter_pair1)
|
||
|
{
|
||
|
cv::Point2f p1 = iter_pair1->second.pt-iter_pair1->first.pt;
|
||
|
p1 = p1/cv::norm(p1);
|
||
|
std::vector<std::pair<cv::KeyPoint,cv::KeyPoint> >::iterator iter_pair2 = iter_pair1+1;
|
||
|
for(;iter_pair2 != pairs.end();++iter_pair2)
|
||
|
{
|
||
|
cv::Point2f p2 = iter_pair2->second.pt-iter_pair2->first.pt;
|
||
|
p2 = p2/cv::norm(p2);
|
||
|
if(p2.dot(p1) > 0.95)
|
||
|
{
|
||
|
if(best_state < WRONG_PAIR_ANGLE)
|
||
|
best_state = WRONG_PAIR_ANGLE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// check orientations
|
||
|
if(checkOrientation(iter_pair1->first.pt,iter_pair1->second.pt,iter_pair2->first.pt,iter_pair2->second.pt))
|
||
|
std::swap(iter_pair2->first,iter_pair2->second);
|
||
|
|
||
|
// minimal case
|
||
|
std::vector<cv::Point2f> board_points;
|
||
|
board_points.resize(9,cv::Point2f(std::numeric_limits<float>::quiet_NaN(),
|
||
|
std::numeric_limits<float>::quiet_NaN()));
|
||
|
|
||
|
board_points[1] = iter_pair2->first.pt;
|
||
|
board_points[3] = iter_pair1->first.pt;
|
||
|
board_points[4] = center.pt;
|
||
|
board_points[5] = iter_pair1->second.pt;
|
||
|
board_points[7] = iter_pair2->second.pt;
|
||
|
boards.push_back(Board(cv::Size(3,3),board_points,white_angle,black_angle));
|
||
|
Board &board = boards.back();
|
||
|
|
||
|
if(board.isEmpty())
|
||
|
{
|
||
|
if(best_state < WRONG_CONFIGURATION)
|
||
|
best_state = WRONG_CONFIGURATION;
|
||
|
boards.pop_back(); // MAKE SURE board is no longer used !!!!
|
||
|
continue;
|
||
|
}
|
||
|
best_state = FOUND_BOARD;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return best_state;
|
||
|
}
|
||
|
|
||
|
void Chessboard::detectImpl(const Mat& image, vector<KeyPoint>& keypoints,std::vector<Mat> &feature_maps,const Mat& mask)const
|
||
|
{
|
||
|
keypoints.clear();
|
||
|
Board board = detectImpl(image,feature_maps,mask);
|
||
|
keypoints = board.getKeyPoints();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Chessboard::Board Chessboard::detectImpl(const Mat& gray,std::vector<cv::Mat> &feature_maps,const Mat& mask)const
|
||
|
{
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
debug_image = gray;
|
||
|
#endif
|
||
|
CV_CheckTypeEQ(gray.type(),CV_8UC1, "Unsupported image type");
|
||
|
|
||
|
//TODO is this needed?
|
||
|
// double min,max;
|
||
|
// cv::minMaxLoc(gray,&min,&max);
|
||
|
// gray = (gray-min)*(255.0/(max-min));
|
||
|
|
||
|
cv::Size chessboard_size2(parameters.chessboard_size.height,parameters.chessboard_size.width);
|
||
|
std::vector<KeyPoint> keypoints_seed;
|
||
|
std::vector<std::vector<float> > angles;
|
||
|
findKeyPoints(gray,keypoints_seed,feature_maps,angles,mask);
|
||
|
if(keypoints_seed.empty())
|
||
|
return Chessboard::Board();
|
||
|
|
||
|
// check how many points are likely a checkerbord corner
|
||
|
float response = fabs(keypoints_seed.front().response*MIN_RESPONSE_RATIO);
|
||
|
std::vector<KeyPoint>::const_iterator seed_iter = keypoints_seed.begin();
|
||
|
int count = 0;
|
||
|
int inum = chessboard_size2.width*chessboard_size2.height;
|
||
|
for(;seed_iter != keypoints_seed.end();++seed_iter)
|
||
|
{
|
||
|
if(fabs(seed_iter->response) > response)
|
||
|
{
|
||
|
++count;
|
||
|
if(count >= inum)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(seed_iter == keypoints_seed.end())
|
||
|
return Chessboard::Board();
|
||
|
// just add dummy points or flann will fail during knnSearch
|
||
|
if(keypoints_seed.size() < 21)
|
||
|
keypoints_seed.resize(21, cv::KeyPoint(-99999.0F,-99999.0F,0.0F,0.0F,0.0F));
|
||
|
|
||
|
//build kd tree
|
||
|
cv::Mat data = buildData(keypoints_seed);
|
||
|
cv::Mat flann_data(data.rows,2,CV_32FC1);
|
||
|
data(cv::Rect(0,0,2,data.rows)).copyTo(flann_data);
|
||
|
cv::flann::Index flann_index(flann_data,cv::flann::KDTreeIndexParams(1),cvflann::FLANN_DIST_EUCLIDEAN);
|
||
|
|
||
|
// for each point
|
||
|
std::vector<std::vector<float> >::const_iterator angles_iter = angles.begin();
|
||
|
std::vector<cv::KeyPoint>::const_iterator points_iter = keypoints_seed.begin();
|
||
|
cv::Rect bounding_box(5,5,gray.cols-10,gray.rows-10);
|
||
|
int max_tests = std::min(parameters.max_tests,int(keypoints_seed.size()));
|
||
|
for(count=0;count < max_tests;++angles_iter,++points_iter,++count)
|
||
|
{
|
||
|
// regard current point as center point
|
||
|
// which must have two angles!!! (this was already checked)
|
||
|
float min_response = points_iter->response*MIN_RESPONSE_RATIO;
|
||
|
if(min_response <= 0)
|
||
|
{
|
||
|
if(max_tests+1 < int(keypoints_seed.size()))
|
||
|
++max_tests;
|
||
|
continue;
|
||
|
}
|
||
|
const std::vector<float> &angles_i = *angles_iter;
|
||
|
float white_angle = fabs(angles_i.front()); // angle is negative if black --> clockwise
|
||
|
float black_angle = fabs(angles_i.back()); // angle is negative if black --> clockwise
|
||
|
if(angles_i.front() < 0) // ensure white angle is first
|
||
|
swap(white_angle,black_angle);
|
||
|
|
||
|
std::vector<Board> boards;
|
||
|
generateBoards(flann_index, data,*points_iter,white_angle,black_angle,min_response,gray,boards);
|
||
|
std::vector<Chessboard::Board>::iterator iter_boards = boards.begin();
|
||
|
for(;iter_boards != boards.end();++iter_boards)
|
||
|
{
|
||
|
cv::Mat h = iter_boards->estimateHomography();
|
||
|
int size = iter_boards->validateCorners(data,flann_index,h,min_response);
|
||
|
if(size != 9)
|
||
|
continue;
|
||
|
if(!iter_boards->validateContour())
|
||
|
continue;
|
||
|
//grow based on kd-tree
|
||
|
iter_boards->grow(data,flann_index);
|
||
|
if(!iter_boards->checkUnique())
|
||
|
continue;
|
||
|
|
||
|
// check bounding box
|
||
|
std::vector<cv::Point2f> contour = iter_boards->getContour();
|
||
|
std::vector<cv::Point2f>::const_iterator iter = contour.begin();
|
||
|
for(;iter != contour.end();++iter)
|
||
|
{
|
||
|
if(!bounding_box.contains(*iter))
|
||
|
break;
|
||
|
}
|
||
|
if(iter != contour.end())
|
||
|
continue;
|
||
|
|
||
|
if(iter_boards->getSize() == parameters.chessboard_size ||
|
||
|
iter_boards->getSize() == chessboard_size2)
|
||
|
{
|
||
|
iter_boards->normalizeOrientation(false);
|
||
|
if(iter_boards->getSize() != parameters.chessboard_size)
|
||
|
{
|
||
|
if(iter_boards->isCellBlack(0,0) == iter_boards->isCellBlack(0,int(iter_boards->colCount())-1))
|
||
|
iter_boards->rotateLeft();
|
||
|
else
|
||
|
iter_boards->rotateRight();
|
||
|
}
|
||
|
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
|
||
|
cv::Mat img;
|
||
|
iter_boards->draw(debug_image,img);
|
||
|
cv::imshow("chessboard",img);
|
||
|
cv::waitKey(-1);
|
||
|
#endif
|
||
|
return *iter_boards;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(iter_boards->getSize().width*iter_boards->getSize().height > chessboard_size2.width*chessboard_size2.height)
|
||
|
{
|
||
|
if(parameters.larger)
|
||
|
return *iter_boards;
|
||
|
else
|
||
|
return Chessboard::Board();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return Chessboard::Board();
|
||
|
}
|
||
|
|
||
|
void Chessboard::detectAndCompute(cv::InputArray image,cv::InputArray mask,std::vector<cv::KeyPoint>& keypoints,
|
||
|
cv::OutputArray descriptors,bool useProvidedKeyPoints)
|
||
|
{
|
||
|
descriptors.clear();
|
||
|
useProvidedKeyPoints=false;
|
||
|
std::vector<cv::Mat> maps;
|
||
|
detectImpl(image.getMat(),keypoints,maps,mask.getMat());
|
||
|
if(!useProvidedKeyPoints) // suppress compiler warning
|
||
|
return;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void Chessboard::detectImpl(const Mat& image, vector<KeyPoint>& keypoints,const Mat& mask)const
|
||
|
{
|
||
|
std::vector<cv::Mat> maps;
|
||
|
detectImpl(image,keypoints,maps,mask);
|
||
|
}
|
||
|
|
||
|
void Chessboard::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask)const
|
||
|
{
|
||
|
detectImpl(image.getMat(),keypoints,mask.getMat());
|
||
|
}
|
||
|
|
||
|
}} // end namespace details and cv
|
||
|
|
||
|
|
||
|
// public API
|
||
|
bool cv::findChessboardCornersSB(cv::InputArray image_, cv::Size pattern_size,
|
||
|
cv::OutputArray corners_, int flags)
|
||
|
{
|
||
|
CV_INSTRUMENT_REGION()
|
||
|
int type = image_.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||
|
Mat img = image_.getMat();
|
||
|
CV_CheckType(type, depth == CV_8U && (cn == 1 || cn == 3),
|
||
|
"Only 8-bit grayscale or color images are supported");
|
||
|
if(pattern_size.width <= 2 || pattern_size.height <= 2)
|
||
|
{
|
||
|
CV_Error(Error::StsOutOfRange, "Both width and height of the pattern should have bigger than 2");
|
||
|
}
|
||
|
if (!corners_.needed())
|
||
|
CV_Error(Error::StsNullPtr, "Null pointer to corners");
|
||
|
if (img.channels() != 1)
|
||
|
cvtColor(img, img, COLOR_BGR2GRAY);
|
||
|
|
||
|
details::Chessboard::Parameters para;
|
||
|
para.chessboard_size = pattern_size;
|
||
|
|
||
|
switch(flags)
|
||
|
{
|
||
|
case 1: // high accuracy profile
|
||
|
para.min_scale = 2;
|
||
|
para.max_scale = 4;
|
||
|
para.max_tests = 100;
|
||
|
para.super_resolution = true;
|
||
|
para.max_points = std::max(500,pattern_size.width*pattern_size.height*2);
|
||
|
break;
|
||
|
default: // default profile
|
||
|
para.min_scale = 2;
|
||
|
para.max_scale = 3;
|
||
|
para.max_tests = 20;
|
||
|
para.max_points = pattern_size.width*pattern_size.height*2;
|
||
|
para.super_resolution = false;
|
||
|
break;
|
||
|
}
|
||
|
std::vector<cv::KeyPoint> corners;
|
||
|
details::Chessboard board(para);
|
||
|
board.detect(img,corners);
|
||
|
if(corners.empty())
|
||
|
{
|
||
|
corners_.release();
|
||
|
return false;
|
||
|
}
|
||
|
std::vector<cv::Point2f> points;
|
||
|
KeyPoint::convert(corners,points);
|
||
|
Mat(points).copyTo(corners_);
|
||
|
return true;
|
||
|
}
|