mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 00:01:27 +08:00
218 lines
8.7 KiB
Plaintext
218 lines
8.7 KiB
Plaintext
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "opencv2/gpu/device/common.hpp"
|
||
|
|
||
|
namespace cv { namespace gpu { namespace device
|
||
|
{
|
||
|
namespace optical_flow
|
||
|
{
|
||
|
#define NEEDLE_MAP_SCALE 16
|
||
|
#define MAX_FLOW 30.0f
|
||
|
#define NUM_VERTS_PER_ARROW 6
|
||
|
|
||
|
__global__ void NeedleMapAverageKernel(const DevMem2Df u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
|
||
|
{
|
||
|
__shared__ float smem[2 * NEEDLE_MAP_SCALE];
|
||
|
|
||
|
volatile float* u_col_sum = smem;
|
||
|
volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;
|
||
|
|
||
|
const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
|
||
|
const int y = blockIdx.y * NEEDLE_MAP_SCALE;
|
||
|
|
||
|
u_col_sum[threadIdx.x] = 0;
|
||
|
v_col_sum[threadIdx.x] = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
|
||
|
{
|
||
|
u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
|
||
|
v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
|
||
|
}
|
||
|
|
||
|
if (threadIdx.x < 8)
|
||
|
{
|
||
|
// now add the column sums
|
||
|
const uint X = threadIdx.x;
|
||
|
|
||
|
if (X | 0xfe == 0xfe) // bit 0 is 0
|
||
|
{
|
||
|
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
|
||
|
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
|
||
|
}
|
||
|
|
||
|
if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
|
||
|
{
|
||
|
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
|
||
|
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
|
||
|
}
|
||
|
|
||
|
if (X | 0xf8 == 0xf8)
|
||
|
{
|
||
|
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
|
||
|
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
|
||
|
}
|
||
|
|
||
|
if (X == 0)
|
||
|
{
|
||
|
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
|
||
|
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (threadIdx.x == 0)
|
||
|
{
|
||
|
const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);
|
||
|
|
||
|
u_col_sum[0] *= coeff;
|
||
|
v_col_sum[0] *= coeff;
|
||
|
|
||
|
u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
|
||
|
v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg)
|
||
|
{
|
||
|
const dim3 block(NEEDLE_MAP_SCALE);
|
||
|
const dim3 grid(u_avg.cols, u_avg.rows);
|
||
|
|
||
|
NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
|
||
|
cudaSafeCall( cudaGetLastError() );
|
||
|
|
||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
|
||
|
__global__ void NeedleMapVertexKernel(const DevMem2Df u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float xscale, float yscale)
|
||
|
{
|
||
|
// test - just draw a triangle at each pixel
|
||
|
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||
|
|
||
|
const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
|
||
|
const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
|
||
|
|
||
|
float3 v[NUM_VERTS_PER_ARROW];
|
||
|
|
||
|
if (x < u_avg.cols && y < u_avg.rows)
|
||
|
{
|
||
|
const float u_avg_val = u_avg(y, x);
|
||
|
const float v_avg_val = v_avg(y, x);
|
||
|
|
||
|
const float theta = ::atan2f(v_avg_val, u_avg_val) + CV_PI;
|
||
|
|
||
|
float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
|
||
|
r = fmin(14.0f * (r / MAX_FLOW), 14.0f);
|
||
|
|
||
|
v[0].z = 1.0f;
|
||
|
v[1].z = 0.7f;
|
||
|
v[2].z = 0.7f;
|
||
|
v[3].z = 0.7f;
|
||
|
v[4].z = 0.7f;
|
||
|
v[5].z = 1.0f;
|
||
|
|
||
|
v[0].x = arrow_x;
|
||
|
v[0].y = arrow_y;
|
||
|
v[5].x = arrow_x;
|
||
|
v[5].y = arrow_y;
|
||
|
|
||
|
v[2].x = arrow_x + r * ::cosf(theta);
|
||
|
v[2].y = arrow_y + r * ::sinf(theta);
|
||
|
v[3].x = v[2].x;
|
||
|
v[3].y = v[2].y;
|
||
|
|
||
|
r = ::fmin(r, 2.5f);
|
||
|
|
||
|
v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f);
|
||
|
v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f);
|
||
|
|
||
|
v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f);
|
||
|
v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f);
|
||
|
|
||
|
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
|
||
|
|
||
|
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||
|
vertex_data[indx++] = v[0].x * xscale;
|
||
|
vertex_data[indx++] = v[0].y * yscale;
|
||
|
vertex_data[indx++] = v[0].z;
|
||
|
|
||
|
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||
|
vertex_data[indx++] = v[1].x * xscale;
|
||
|
vertex_data[indx++] = v[1].y * yscale;
|
||
|
vertex_data[indx++] = v[1].z;
|
||
|
|
||
|
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||
|
vertex_data[indx++] = v[2].x * xscale;
|
||
|
vertex_data[indx++] = v[2].y * yscale;
|
||
|
vertex_data[indx++] = v[2].z;
|
||
|
|
||
|
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||
|
vertex_data[indx++] = v[3].x * xscale;
|
||
|
vertex_data[indx++] = v[3].y * yscale;
|
||
|
vertex_data[indx++] = v[3].z;
|
||
|
|
||
|
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||
|
vertex_data[indx++] = v[4].x * xscale;
|
||
|
vertex_data[indx++] = v[4].y * yscale;
|
||
|
vertex_data[indx++] = v[4].z;
|
||
|
|
||
|
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||
|
vertex_data[indx++] = v[5].x * xscale;
|
||
|
vertex_data[indx++] = v[5].y * yscale;
|
||
|
vertex_data[indx++] = v[5].z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale)
|
||
|
{
|
||
|
const dim3 block(16);
|
||
|
const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));
|
||
|
|
||
|
NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, xscale, yscale);
|
||
|
cudaSafeCall( cudaGetLastError() );
|
||
|
|
||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
}}}
|