mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 22:59:16 +08:00
202 lines
7.0 KiB
C++
202 lines
7.0 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Stochastic Gradient Descent SVM Classifier *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
namespace cv {
|
||
|
namespace ml {
|
||
|
|
||
|
SVMSGD::SVMSGD(float lambda, float learnRate, uint nIterations){
|
||
|
|
||
|
// Initialize with random seed
|
||
|
_randomNumber = 1;
|
||
|
|
||
|
// Initialize constants
|
||
|
_slidingWindowSize = 0;
|
||
|
_nFeatures = 0;
|
||
|
_predictSlidingWindowSize = 1;
|
||
|
|
||
|
// Initialize sliderCounter at index 0
|
||
|
_sliderCounter = 0;
|
||
|
|
||
|
// Parameters for learning
|
||
|
_lambda = lambda; // regularization
|
||
|
_learnRate = learnRate; // learning rate (ideally should be large at beginning and decay each iteration)
|
||
|
_nIterations = nIterations; // number of training iterations
|
||
|
|
||
|
// True only in the first predict iteration
|
||
|
_initPredict = true;
|
||
|
|
||
|
// Online update flag
|
||
|
_onlineUpdate = false;
|
||
|
}
|
||
|
|
||
|
SVMSGD::SVMSGD(uint updateFrequency, float learnRateDecay, float lambda, float learnRate, uint nIterations){
|
||
|
|
||
|
// Initialize with random seed
|
||
|
_randomNumber = 1;
|
||
|
|
||
|
// Initialize constants
|
||
|
_slidingWindowSize = 0;
|
||
|
_nFeatures = 0;
|
||
|
_predictSlidingWindowSize = updateFrequency;
|
||
|
|
||
|
// Initialize sliderCounter at index 0
|
||
|
_sliderCounter = 0;
|
||
|
|
||
|
// Parameters for learning
|
||
|
_lambda = lambda; // regularization
|
||
|
_learnRate = learnRate; // learning rate (ideally should be large at beginning and decay each iteration)
|
||
|
_nIterations = nIterations; // number of training iterations
|
||
|
|
||
|
// True only in the first predict iteration
|
||
|
_initPredict = true;
|
||
|
|
||
|
// Online update flag
|
||
|
_onlineUpdate = true;
|
||
|
|
||
|
// Learn rate decay: _learnRate = _learnRate * _learnDecay
|
||
|
_learnRateDecay = learnRateDecay;
|
||
|
}
|
||
|
|
||
|
SVMSGD::~SVMSGD(){
|
||
|
|
||
|
}
|
||
|
|
||
|
SVMSGD* SVMSGD::clone() const{
|
||
|
return new SVMSGD(*this);
|
||
|
}
|
||
|
|
||
|
void SVMSGD::train(cv::Mat trainFeatures, cv::Mat labels){
|
||
|
|
||
|
// Initialize _nFeatures
|
||
|
_slidingWindowSize = trainFeatures.rows;
|
||
|
_nFeatures = trainFeatures.cols;
|
||
|
|
||
|
float innerProduct;
|
||
|
// Initialize weights vector with zeros
|
||
|
if (_weights.size()==0){
|
||
|
_weights.reserve(_nFeatures);
|
||
|
for (uint feat = 0; feat < _nFeatures; ++feat){
|
||
|
_weights.push_back(0.0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Stochastic gradient descent SVM
|
||
|
for (uint iter = 0; iter < _nIterations; ++iter){
|
||
|
generateRandomIndex();
|
||
|
innerProduct = calcInnerProduct(trainFeatures.ptr<float>(_randomIndex));
|
||
|
int label = (labels.at<int>(_randomIndex,0) > 0) ? 1 : -1; // ensure that labels are -1 or 1
|
||
|
updateWeights(innerProduct, trainFeatures.ptr<float>(_randomIndex), label );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float SVMSGD::predict(cv::Mat newFeature){
|
||
|
float innerProduct;
|
||
|
|
||
|
if (_initPredict){
|
||
|
_nFeatures = newFeature.cols;
|
||
|
_slidingWindowSize = _predictSlidingWindowSize;
|
||
|
_featuresSlider = cv::Mat::zeros(_slidingWindowSize, _nFeatures, CV_32F);
|
||
|
_initPredict = false;
|
||
|
_labelSlider = new float[_predictSlidingWindowSize]();
|
||
|
_learnRate = _learnRate * _learnRateDecay;
|
||
|
}
|
||
|
|
||
|
innerProduct = calcInnerProduct(newFeature.ptr<float>(0));
|
||
|
|
||
|
// Resultant label (-1 or 1)
|
||
|
int label = (innerProduct>=0) ? 1 : -1;
|
||
|
|
||
|
if (_onlineUpdate){
|
||
|
// Update the featuresSlider with newFeature and _labelSlider with label
|
||
|
newFeature.row(0).copyTo(_featuresSlider.row(_sliderCounter));
|
||
|
_labelSlider[_sliderCounter] = float(label);
|
||
|
|
||
|
// Update weights with a random index
|
||
|
if (_sliderCounter == _slidingWindowSize-1){
|
||
|
generateRandomIndex();
|
||
|
updateWeights(innerProduct, _featuresSlider.ptr<float>(_randomIndex), int(_labelSlider[_randomIndex]) );
|
||
|
}
|
||
|
|
||
|
// _sliderCounter++ if < _slidingWindowSize
|
||
|
_sliderCounter = (_sliderCounter == _slidingWindowSize-1) ? 0 : (_sliderCounter+1);
|
||
|
}
|
||
|
|
||
|
return float(label);
|
||
|
}
|
||
|
|
||
|
void SVMSGD::generateRandomIndex(){
|
||
|
// Choose random sample, using Mikolov's fast almost-uniform random number
|
||
|
_randomNumber = _randomNumber * (unsigned long long) 25214903917 + 11;
|
||
|
_randomIndex = uint(_randomNumber % (unsigned long long) _slidingWindowSize);
|
||
|
}
|
||
|
|
||
|
float SVMSGD::calcInnerProduct(float *rowDataPointer){
|
||
|
float innerProduct = 0;
|
||
|
for (uint feat = 0; feat < _nFeatures; ++feat){
|
||
|
innerProduct += _weights[feat] * rowDataPointer[feat];
|
||
|
}
|
||
|
return innerProduct;
|
||
|
}
|
||
|
|
||
|
void SVMSGD::updateWeights(float innerProduct, float *rowDataPointer, int label){
|
||
|
if (label * innerProduct > 1) {
|
||
|
// Not a support vector, only apply weight decay
|
||
|
for (uint feat = 0; feat < _nFeatures; feat++) {
|
||
|
_weights[feat] -= _learnRate * _lambda * _weights[feat];
|
||
|
}
|
||
|
} else {
|
||
|
// It's a support vector, add it to the weights
|
||
|
for (uint feat = 0; feat < _nFeatures; feat++) {
|
||
|
_weights[feat] -= _learnRate * (_lambda * _weights[feat] - label * rowDataPointer[feat]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|