2020-11-04 02:39:16 +08:00
|
|
|
#include <chrono>
|
|
|
|
#include <iomanip>
|
|
|
|
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/gapi.hpp"
|
|
|
|
#include "opencv2/gapi/core.hpp"
|
|
|
|
#include "opencv2/gapi/imgproc.hpp"
|
|
|
|
#include "opencv2/gapi/infer.hpp"
|
|
|
|
#include "opencv2/gapi/infer/ie.hpp"
|
|
|
|
#include "opencv2/gapi/infer/onnx.hpp"
|
|
|
|
#include "opencv2/gapi/cpu/gcpukernel.hpp"
|
|
|
|
#include "opencv2/gapi/streaming/cap.hpp"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
const std::string keys =
|
|
|
|
"{ h help | | print this help message }"
|
|
|
|
"{ input | | Path to an input video file }"
|
|
|
|
"{ fdm | | IE face detection model IR }"
|
|
|
|
"{ fdw | | IE face detection model weights }"
|
|
|
|
"{ fdd | | IE face detection device }"
|
|
|
|
"{ emom | | ONNX emotions recognition model }"
|
|
|
|
"{ output | | (Optional) Path to an output video file }"
|
|
|
|
;
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace custom {
|
|
|
|
G_API_NET(Faces, <cv::GMat(cv::GMat)>, "face-detector");
|
|
|
|
G_API_NET(Emotions, <cv::GMat(cv::GMat)>, "emotions-recognition");
|
|
|
|
|
|
|
|
G_API_OP(PostProc, <cv::GArray<cv::Rect>(cv::GMat, cv::GMat)>, "custom.fd_postproc") {
|
|
|
|
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &) {
|
|
|
|
return cv::empty_array_desc();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
GAPI_OCV_KERNEL(OCVPostProc, PostProc) {
|
|
|
|
static void run(const cv::Mat &in_ssd_result,
|
|
|
|
const cv::Mat &in_frame,
|
|
|
|
std::vector<cv::Rect> &out_faces) {
|
|
|
|
const int MAX_PROPOSALS = 200;
|
|
|
|
const int OBJECT_SIZE = 7;
|
|
|
|
const cv::Size upscale = in_frame.size();
|
|
|
|
const cv::Rect surface({0,0}, upscale);
|
|
|
|
|
|
|
|
out_faces.clear();
|
|
|
|
|
|
|
|
const float *data = in_ssd_result.ptr<float>();
|
|
|
|
for (int i = 0; i < MAX_PROPOSALS; i++) {
|
|
|
|
const float image_id = data[i * OBJECT_SIZE + 0]; // batch id
|
|
|
|
const float confidence = data[i * OBJECT_SIZE + 2];
|
|
|
|
const float rc_left = data[i * OBJECT_SIZE + 3];
|
|
|
|
const float rc_top = data[i * OBJECT_SIZE + 4];
|
|
|
|
const float rc_right = data[i * OBJECT_SIZE + 5];
|
|
|
|
const float rc_bottom = data[i * OBJECT_SIZE + 6];
|
|
|
|
|
|
|
|
if (image_id < 0.f) { // indicates end of detections
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (confidence < 0.5f) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Rect rc;
|
|
|
|
rc.x = static_cast<int>(rc_left * upscale.width);
|
|
|
|
rc.y = static_cast<int>(rc_top * upscale.height);
|
|
|
|
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
|
|
|
|
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
|
|
|
|
out_faces.push_back(rc & surface);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
//! [Postproc]
|
|
|
|
|
|
|
|
} // namespace custom
|
|
|
|
|
|
|
|
namespace labels {
|
|
|
|
// Labels as defined in
|
|
|
|
// https://github.com/onnx/models/tree/master/vision/body_analysis/emotion_ferplus
|
|
|
|
//
|
|
|
|
const std::string emotions[] = {
|
|
|
|
"neutral", "happiness", "surprise", "sadness", "anger", "disgust", "fear", "contempt"
|
|
|
|
};
|
|
|
|
namespace {
|
|
|
|
template<typename Iter>
|
|
|
|
std::vector<float> softmax(Iter begin, Iter end) {
|
|
|
|
std::vector<float> prob(end - begin, 0.f);
|
|
|
|
std::transform(begin, end, prob.begin(), [](float x) { return std::exp(x); });
|
|
|
|
float sum = std::accumulate(prob.begin(), prob.end(), 0.0f);
|
|
|
|
for (int i = 0; i < static_cast<int>(prob.size()); i++)
|
|
|
|
prob[i] /= sum;
|
|
|
|
return prob;
|
|
|
|
}
|
|
|
|
|
|
|
|
void DrawResults(cv::Mat &frame,
|
|
|
|
const std::vector<cv::Rect> &faces,
|
|
|
|
const std::vector<cv::Mat> &out_emotions) {
|
|
|
|
CV_Assert(faces.size() == out_emotions.size());
|
|
|
|
|
|
|
|
for (auto it = faces.begin(); it != faces.end(); ++it) {
|
|
|
|
const auto idx = std::distance(faces.begin(), it);
|
|
|
|
const auto &rc = *it;
|
|
|
|
|
|
|
|
const float *emotions_data = out_emotions[idx].ptr<float>();
|
|
|
|
auto sm = softmax(emotions_data, emotions_data + 8);
|
|
|
|
const auto emo_id = std::max_element(sm.begin(), sm.end()) - sm.begin();
|
|
|
|
|
|
|
|
const int ATTRIB_OFFSET = 15;
|
|
|
|
cv::rectangle(frame, rc, {0, 255, 0}, 4);
|
|
|
|
cv::putText(frame, emotions[emo_id],
|
|
|
|
cv::Point(rc.x, rc.y - ATTRIB_OFFSET),
|
|
|
|
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
|
|
|
1,
|
|
|
|
cv::Scalar(0, 0, 255));
|
|
|
|
|
|
|
|
std::cout << emotions[emo_id] << " at " << rc << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
} // namespace labels
|
|
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
|
|
{
|
|
|
|
cv::CommandLineParser cmd(argc, argv, keys);
|
|
|
|
if (cmd.has("help")) {
|
|
|
|
cmd.printMessage();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
const std::string input = cmd.get<std::string>("input");
|
|
|
|
const std::string output = cmd.get<std::string>("output");
|
|
|
|
|
|
|
|
// OpenVINO FD parameters here
|
|
|
|
auto det_net = cv::gapi::ie::Params<custom::Faces> {
|
|
|
|
cmd.get<std::string>("fdm"), // read cmd args: path to topology IR
|
|
|
|
cmd.get<std::string>("fdw"), // read cmd args: path to weights
|
|
|
|
cmd.get<std::string>("fdd"), // read cmd args: device specifier
|
|
|
|
};
|
|
|
|
|
|
|
|
// ONNX Emotions parameters here
|
|
|
|
auto emo_net = cv::gapi::onnx::Params<custom::Emotions> {
|
|
|
|
cmd.get<std::string>("emom"), // read cmd args: path to the ONNX model
|
|
|
|
}.cfgNormalize({false}); // model accepts 0..255 range in FP32
|
|
|
|
|
|
|
|
auto kernels = cv::gapi::kernels<custom::OCVPostProc>();
|
|
|
|
auto networks = cv::gapi::networks(det_net, emo_net);
|
|
|
|
|
|
|
|
cv::GMat in;
|
|
|
|
cv::GMat bgr = cv::gapi::copy(in);
|
|
|
|
cv::GMat frame = cv::gapi::streaming::desync(bgr);
|
|
|
|
cv::GMat detections = cv::gapi::infer<custom::Faces>(frame);
|
|
|
|
cv::GArray<cv::Rect> faces = custom::PostProc::on(detections, frame);
|
|
|
|
cv::GArray<cv::GMat> emotions = cv::gapi::infer<custom::Emotions>(faces, frame);
|
|
|
|
auto pipeline = cv::GComputation(cv::GIn(in), cv::GOut(bgr, faces, emotions))
|
|
|
|
.compileStreaming(cv::compile_args(kernels, networks));
|
|
|
|
|
|
|
|
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input);
|
|
|
|
pipeline.setSource(cv::gin(in_src));
|
|
|
|
|
|
|
|
cv::util::optional<cv::Mat> out_frame;
|
|
|
|
cv::util::optional<std::vector<cv::Rect>> out_faces;
|
|
|
|
cv::util::optional<std::vector<cv::Mat>> out_emotions;
|
|
|
|
|
|
|
|
cv::Mat last_mat;
|
|
|
|
std::vector<cv::Rect> last_faces;
|
|
|
|
std::vector<cv::Mat> last_emotions;
|
|
|
|
|
|
|
|
cv::VideoWriter writer;
|
2021-11-26 19:31:15 +08:00
|
|
|
cv::TickMeter tm;
|
|
|
|
std::size_t frames = 0u;
|
2020-11-04 02:39:16 +08:00
|
|
|
|
2021-11-26 19:31:15 +08:00
|
|
|
tm.start();
|
|
|
|
pipeline.start();
|
2020-11-04 02:39:16 +08:00
|
|
|
while (pipeline.pull(cv::gout(out_frame, out_faces, out_emotions))) {
|
2021-11-26 19:31:15 +08:00
|
|
|
++frames;
|
2020-11-04 02:39:16 +08:00
|
|
|
if (out_faces && out_emotions) {
|
|
|
|
last_faces = *out_faces;
|
|
|
|
last_emotions = *out_emotions;
|
|
|
|
}
|
|
|
|
if (out_frame) {
|
|
|
|
last_mat = *out_frame;
|
|
|
|
labels::DrawResults(last_mat, last_faces, last_emotions);
|
|
|
|
|
|
|
|
if (!output.empty()) {
|
|
|
|
if (!writer.isOpened()) {
|
|
|
|
const auto sz = cv::Size{last_mat.cols, last_mat.rows};
|
|
|
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
|
|
|
|
CV_Assert(writer.isOpened());
|
|
|
|
}
|
|
|
|
writer << last_mat;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!last_mat.empty()) {
|
|
|
|
cv::imshow("Out", last_mat);
|
|
|
|
cv::waitKey(1);
|
|
|
|
}
|
|
|
|
}
|
2021-11-26 19:31:15 +08:00
|
|
|
tm.stop();
|
|
|
|
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
|
2020-11-04 02:39:16 +08:00
|
|
|
return 0;
|
|
|
|
}
|