mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
279 lines
9.8 KiB
C
279 lines
9.8 KiB
C
|
/***********************************************************************
|
||
|
* Software License Agreement (BSD License)
|
||
|
*
|
||
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||
|
*
|
||
|
* THE BSD LICENSE
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*************************************************************************/
|
||
|
|
||
|
#ifndef FLANN_H
|
||
|
#define FLANN_H
|
||
|
|
||
|
|
||
|
#include "constants.h"
|
||
|
|
||
|
|
||
|
#ifdef WIN32
|
||
|
/* win32 dll export/import directives */
|
||
|
#ifdef flann_EXPORTS
|
||
|
#define LIBSPEC __declspec(dllexport)
|
||
|
#else
|
||
|
#define LIBSPEC __declspec(dllimport)
|
||
|
#endif
|
||
|
#else
|
||
|
/* unix needs nothing */
|
||
|
#define LIBSPEC
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
struct FLANNParameters {
|
||
|
flann_algorithm_t algorithm; // the algorithm to use (see constants.h)
|
||
|
|
||
|
int checks; // how many leafs (features) to check in one search
|
||
|
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
||
|
int trees; // number of randomized trees to use (for kdtree)
|
||
|
int branching; // branching factor (for kmeans tree)
|
||
|
int iterations; // max iterations to perform in one kmeans cluetering (kmeans tree)
|
||
|
flann_centers_init_t centers_init; // algorithm used for picking the initial cluetr centers for kmeans tree
|
||
|
float target_precision; // precision desired (used for autotuning, -1 otherwise)
|
||
|
float build_weight; // build tree time weighting factor
|
||
|
float memory_weight; // index memory weigthing factor
|
||
|
float sample_fraction; // what fraction of the dataset to use for autotuning
|
||
|
|
||
|
flann_log_level_t log_level; // determines the verbosity of each flann function
|
||
|
char* log_destination; // file where the output should go, NULL for the console
|
||
|
long random_seed; // random seed to use
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
typedef void* FLANN_INDEX; // deprecated
|
||
|
typedef void* flann_index_t;
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
Sets the log level used for all flann functions (unless
|
||
|
specified in FLANNParameters for each call
|
||
|
|
||
|
Params:
|
||
|
level = verbosity level (defined in constants.h)
|
||
|
*/
|
||
|
LIBSPEC void flann_log_verbosity(int level);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Sets the distance type to use throughout FLANN.
|
||
|
* If distance type specified is MINKOWSKI, the second argument
|
||
|
* specifies which order the minkowski distance should have.
|
||
|
*/
|
||
|
LIBSPEC void flann_set_distance_type(flann_distance_t distance_type, int order);
|
||
|
|
||
|
|
||
|
/**
|
||
|
Builds and returns an index. It uses autotuning if the target_precision field of index_params
|
||
|
is between 0 and 1, or the parameters specified if it's -1.
|
||
|
|
||
|
Params:
|
||
|
dataset = pointer to a data set stored in row major order
|
||
|
rows = number of rows (features) in the dataset
|
||
|
cols = number of columns in the dataset (feature dimensionality)
|
||
|
speedup = speedup over linear search, estimated if using autotuning, output parameter
|
||
|
index_params = index related parameters
|
||
|
flann_params = generic flann parameters
|
||
|
|
||
|
Returns: the newly created index or a number <0 for error
|
||
|
*/
|
||
|
LIBSPEC FLANN_INDEX flann_build_index(float* dataset,
|
||
|
int rows,
|
||
|
int cols,
|
||
|
float* speedup,
|
||
|
struct FLANNParameters* flann_params);
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Saves the index to a file. Only the index is saved into the file, the dataset corresponding to the index is not saved.
|
||
|
*
|
||
|
* @param index_id The index that should be saved
|
||
|
* @param filename The filename the index should be saved to
|
||
|
* @return Returns 0 on success, negative value on error.
|
||
|
*/
|
||
|
LIBSPEC int flann_save_index(FLANN_INDEX index_id,
|
||
|
char* filename);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Loads an index from a file.
|
||
|
*
|
||
|
* @param filename File to load the index from.
|
||
|
* @param dataset The dataset corresponding to the index.
|
||
|
* @param rows Dataset tors
|
||
|
* @param cols Dataset columns
|
||
|
* @return
|
||
|
*/
|
||
|
LIBSPEC FLANN_INDEX flann_load_index(char* filename,
|
||
|
float* dataset,
|
||
|
int rows,
|
||
|
int cols);
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
Builds an index and uses it to find nearest neighbors.
|
||
|
|
||
|
Params:
|
||
|
dataset = pointer to a data set stored in row major order
|
||
|
rows = number of rows (features) in the dataset
|
||
|
cols = number of columns in the dataset (feature dimensionality)
|
||
|
testset = pointer to a query set stored in row major order
|
||
|
trows = number of rows (features) in the query dataset (same dimensionality as features in the dataset)
|
||
|
indices = pointer to matrix for the indices of the nearest neighbors of the testset features in the dataset
|
||
|
(must have trows number of rows and nn number of columns)
|
||
|
nn = how many nearest neighbors to return
|
||
|
index_params = index related parameters
|
||
|
flann_params = generic flann parameters
|
||
|
|
||
|
Returns: zero or -1 for error
|
||
|
*/
|
||
|
LIBSPEC int flann_find_nearest_neighbors(float* dataset,
|
||
|
int rows,
|
||
|
int cols,
|
||
|
float* testset,
|
||
|
int trows,
|
||
|
int* indices,
|
||
|
float* dists,
|
||
|
int nn,
|
||
|
struct FLANNParameters* flann_params);
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
Searches for nearest neighbors using the index provided
|
||
|
|
||
|
Params:
|
||
|
index_id = the index (constructed previously using flann_build_index).
|
||
|
testset = pointer to a query set stored in row major order
|
||
|
trows = number of rows (features) in the query dataset (same dimensionality as features in the dataset)
|
||
|
indices = pointer to matrix for the indices of the nearest neighbors of the testset features in the dataset
|
||
|
(must have trows number of rows and nn number of columns)
|
||
|
nn = how many nearest neighbors to return
|
||
|
checks = number of checks to perform before the search is stopped
|
||
|
flann_params = generic flann parameters
|
||
|
|
||
|
Returns: zero or a number <0 for error
|
||
|
*/
|
||
|
LIBSPEC int flann_find_nearest_neighbors_index(FLANN_INDEX index_id,
|
||
|
float* testset,
|
||
|
int trows,
|
||
|
int* indices,
|
||
|
float* dists,
|
||
|
int nn,
|
||
|
int checks,
|
||
|
struct FLANNParameters* flann_params);
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Performs an radius search using an already constructed index.
|
||
|
*
|
||
|
* In case of radius search, instead of always returning a predetermined
|
||
|
* number of nearest neighbours (for example the 10 nearest neighbours), the
|
||
|
* search will return all the neighbours found within a search radius
|
||
|
* of the query point.
|
||
|
*
|
||
|
* The check parameter in the function below sets the level of approximation
|
||
|
* for the search by only visiting "checks" number of features in the index
|
||
|
* (the same way as for the KNN search). A lower value for checks will give
|
||
|
* a higher search speedup at the cost of potentially not returning all the
|
||
|
* neighbours in the specified radius.
|
||
|
*/
|
||
|
LIBSPEC int flann_radius_search(FLANN_INDEX index_ptr, /* the index */
|
||
|
float* query, /* query point */
|
||
|
int* indices, /* array for storing the indices found (will be modified) */
|
||
|
float* dists, /* similar, but for storing distances */
|
||
|
int max_nn, /* size of arrays indices and dists */
|
||
|
float radius, /* search radius (squared radius for euclidian metric) */
|
||
|
int checks, /* number of features to check, sets the level of approximation */
|
||
|
FLANNParameters* flann_params);
|
||
|
|
||
|
|
||
|
/**
|
||
|
Deletes an index and releases the memory used by it.
|
||
|
|
||
|
Params:
|
||
|
index_id = the index (constructed previously using flann_build_index).
|
||
|
flann_params = generic flann parameters
|
||
|
|
||
|
Returns: zero or a number <0 for error
|
||
|
*/
|
||
|
LIBSPEC int flann_free_index(FLANN_INDEX index_id,
|
||
|
struct FLANNParameters* flann_params);
|
||
|
|
||
|
/**
|
||
|
Clusters the features in the dataset using a hierarchical kmeans clustering approach.
|
||
|
This is significantly faster than using a flat kmeans clustering for a large number
|
||
|
of clusters.
|
||
|
|
||
|
Params:
|
||
|
dataset = pointer to a data set stored in row major order
|
||
|
rows = number of rows (features) in the dataset
|
||
|
cols = number of columns in the dataset (feature dimensionality)
|
||
|
clusters = number of cluster to compute
|
||
|
result = memory buffer where the output cluster centers are storred
|
||
|
index_params = used to specify the kmeans tree parameters (branching factor, max number of iterations to use)
|
||
|
flann_params = generic flann parameters
|
||
|
|
||
|
Returns: number of clusters computed or a number <0 for error. This number can be different than the number of clusters requested, due to the
|
||
|
way hierarchical clusters are computed. The number of clusters returned will be the highest number of the form
|
||
|
(branch_size-1)*K+1 smaller than the number of clusters requested.
|
||
|
*/
|
||
|
|
||
|
LIBSPEC int flann_compute_cluster_centers(float* dataset,
|
||
|
int rows,
|
||
|
int cols,
|
||
|
int clusters,
|
||
|
float* result,
|
||
|
struct FLANNParameters* flann_params);
|
||
|
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
};
|
||
|
|
||
|
|
||
|
#include "flann.hpp"
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#endif /*FLANN_H*/
|