2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
2017-06-28 16:15:22 +08:00
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
2017-06-26 18:35:51 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
2018-01-10 21:56:42 +08:00
|
|
|
#include "math_functions.hpp"
|
|
|
|
#include "opencl_kernels_dnn.hpp"
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
class MVNLayerImpl : public MVNLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MVNLayerImpl(const LayerParams& params)
|
|
|
|
{
|
|
|
|
setParamsFrom(params);
|
|
|
|
normVariance = params.get<bool>("normalize_variance", true);
|
|
|
|
acrossChannels = params.get<bool>("across_channels", false);
|
|
|
|
eps = params.get<double>("eps", 1e-9);
|
2018-01-23 23:52:41 +08:00
|
|
|
fuse_batch_norm = false;
|
|
|
|
fuse_relu = false;
|
|
|
|
relu_slope = 0.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BatchNormLayer> bnorm;
|
|
|
|
Mat scale, shift;
|
|
|
|
UMat bnorm_weight, bnorm_bias;
|
|
|
|
bool fuse_batch_norm;
|
|
|
|
|
|
|
|
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
|
|
|
|
{
|
|
|
|
bnorm = layer;
|
|
|
|
fuse_batch_norm = !bnorm.empty() && (preferableTarget == DNN_TARGET_OPENCL);
|
|
|
|
return fuse_batch_norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<ReLULayer> activ_relu;
|
|
|
|
float relu_slope;
|
|
|
|
bool fuse_relu;
|
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer)
|
|
|
|
{
|
|
|
|
if (!layer.empty() && preferableTarget == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
activ_relu = layer.dynamicCast<ReLULayer>();
|
|
|
|
if( !activ_relu.empty() )
|
|
|
|
relu_slope = activ_relu->negativeSlope;
|
|
|
|
}
|
|
|
|
fuse_relu = !activ_relu.empty();
|
|
|
|
return fuse_relu;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2018-01-10 21:56:42 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
2018-01-31 19:28:58 +08:00
|
|
|
bool fast_forward_ocl(std::vector<UMat> &inputs, std::vector<UMat> &outputs)
|
|
|
|
{
|
|
|
|
if( fuse_batch_norm && scale.empty())
|
|
|
|
{
|
|
|
|
bnorm->getScaleShift(scale, shift);
|
|
|
|
bnorm_weight = scale.getUMat(ACCESS_READ);
|
|
|
|
bnorm_bias = shift.getUMat(ACCESS_READ);
|
|
|
|
}
|
|
|
|
|
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
|
|
{
|
|
|
|
UMat &inpMat = inputs[inpIdx];
|
|
|
|
UMat &outMat = outputs[inpIdx];
|
|
|
|
int newRows = total(shape(inpMat), 0, splitDim);
|
|
|
|
|
|
|
|
MatShape s = shape(newRows, inpMat.total() / newRows);
|
|
|
|
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
|
|
|
|
UMat meanMat = UMat(s[0], 1, CV_32F);
|
|
|
|
UMat tmpMat = UMat(s[0], s[1], CV_32F);
|
|
|
|
float alpha = 1.0f / s[1];
|
|
|
|
|
|
|
|
String buildopt = "-DNUM=4";
|
|
|
|
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
|
|
|
|
size_t localsize[] = { 128 };
|
|
|
|
size_t globalsize[] = { (size_t)s[0] / 4 * localsize[0] };
|
|
|
|
|
|
|
|
int argId = 0;
|
|
|
|
k.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
|
|
k.set(argId++, (int)s[1]);
|
|
|
|
k.set(argId++, alpha);
|
|
|
|
k.set(argId++, ocl::KernelArg::PtrWriteOnly(meanMat));
|
|
|
|
k.set(argId++, ocl::KernelArg::PtrWriteOnly(tmpMat));
|
|
|
|
k.set(argId++, NULL, localsize[0] * sizeof(cl_float4));
|
|
|
|
bool ret = k.run(1, globalsize, localsize, false);
|
|
|
|
if (!ret)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
buildopt += format(" %s %s", (fuse_batch_norm) ? "-DFUSE_BATCH_NORM" : "",
|
|
|
|
(fuse_relu) ? "-DFUSE_RELU" : "");
|
|
|
|
|
|
|
|
ocl::Kernel k1("mvn_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
|
|
|
|
argId = 0;
|
|
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(tmpMat));
|
|
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(meanMat));
|
|
|
|
k1.set(argId++, (int)s[1]);
|
|
|
|
k1.set(argId++, (float)alpha);
|
|
|
|
k1.set(argId++, (float)eps);
|
|
|
|
k1.set(argId++, (float)relu_slope);
|
|
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_weight));
|
|
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_bias));
|
|
|
|
k1.set(argId++, ocl::KernelArg::PtrWriteOnly(outMat));
|
|
|
|
k1.set(argId++, NULL, localsize[0] * sizeof(cl_float4));
|
|
|
|
ret = k1.run(1, globalsize, localsize, false);
|
|
|
|
if (!ret)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-01-10 21:56:42 +08:00
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
|
|
{
|
|
|
|
std::vector<UMat> inputs;
|
|
|
|
std::vector<UMat> outputs;
|
|
|
|
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
|
|
outputs_.getUMatVector(outputs);
|
|
|
|
|
2018-01-31 19:28:58 +08:00
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
|
|
int row_size = total(shape(inputs[0]), 0, splitDim);
|
|
|
|
int plane_size = total(shape(inputs[0]), splitDim);
|
|
|
|
if (normVariance && (row_size % 4 == 0) && (plane_size % 4 == 0))
|
|
|
|
{
|
|
|
|
bool ret = fast_forward_ocl(inputs, outputs);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-01-23 23:52:41 +08:00
|
|
|
if( fuse_batch_norm && scale.empty())
|
|
|
|
{
|
|
|
|
bnorm->getScaleShift(scale, shift);
|
|
|
|
bnorm_weight = scale.getUMat(ACCESS_READ);
|
|
|
|
bnorm_bias = shift.getUMat(ACCESS_READ);
|
|
|
|
}
|
|
|
|
|
2018-01-10 21:56:42 +08:00
|
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
|
|
{
|
2018-01-23 23:52:41 +08:00
|
|
|
UMat &inpMat = inputs[inpIdx];
|
|
|
|
UMat &outMat = outputs[inpIdx];
|
2018-01-31 19:28:58 +08:00
|
|
|
int newRows = total(shape(inpMat), 0, splitDim);
|
2018-01-10 21:56:42 +08:00
|
|
|
|
2018-01-23 23:52:41 +08:00
|
|
|
MatShape s = shape(newRows, inpMat.total() / newRows);
|
2018-01-10 21:56:42 +08:00
|
|
|
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
|
|
|
|
UMat meanMat = UMat(s[0], 1, CV_32F);
|
|
|
|
UMat devMat = UMat(s[0], 1, CV_32F);
|
|
|
|
UMat tmpMat = UMat(s[0], s[1], CV_32F);
|
|
|
|
float alpha = 1.0f / s[1];
|
|
|
|
|
|
|
|
bool ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, s[0], s[1], alpha,
|
|
|
|
inpMat, 0, oneMat, 0, 0.0f, meanMat, 0);
|
|
|
|
if (!ret)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
|
|
|
|
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
|
2018-02-01 02:09:13 +08:00
|
|
|
String buildopt = format("-DNUM=%d", number);
|
2018-01-10 21:56:42 +08:00
|
|
|
if (normVariance)
|
|
|
|
{
|
2018-01-19 18:23:02 +08:00
|
|
|
String kname = format("calc_mean%d", number);
|
|
|
|
ocl::Kernel kernel(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt);
|
|
|
|
if (kernel.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
kernel.set(0, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
|
|
kernel.set(1, (int)s[0]);
|
|
|
|
kernel.set(2, (int)s[1]);
|
|
|
|
kernel.set(3, ocl::KernelArg::PtrReadOnly(meanMat));
|
|
|
|
kernel.set(4, ocl::KernelArg::PtrWriteOnly(tmpMat));
|
|
|
|
ret = kernel.run(2, global, NULL, false);
|
|
|
|
if (!ret)
|
|
|
|
return false;
|
|
|
|
|
2018-01-10 21:56:42 +08:00
|
|
|
ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, s[0], s[1], alpha,
|
|
|
|
tmpMat, 0, oneMat, 0, 0.0f, devMat, 0);
|
|
|
|
if (!ret)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2018-01-19 18:23:02 +08:00
|
|
|
String kname = format("mvn%d", number);
|
2018-02-01 02:09:13 +08:00
|
|
|
buildopt += format("%s%s%s", (normVariance) ? " -DNORM_VARIANCE" : "",
|
|
|
|
(fuse_batch_norm) ? " -DFUSE_BATCH_NORM" : "",
|
|
|
|
(fuse_relu) ? " -DFUSE_RELU" : "");
|
2018-01-10 21:56:42 +08:00
|
|
|
ocl::Kernel kernel1(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt);
|
|
|
|
if (kernel1.empty())
|
|
|
|
return false;
|
|
|
|
kernel1.set(0, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
|
|
kernel1.set(1, (int)s[0]);
|
|
|
|
kernel1.set(2, (int)s[1]);
|
|
|
|
kernel1.set(3, (float)eps);
|
|
|
|
kernel1.set(4, ocl::KernelArg::PtrReadOnly(meanMat));
|
|
|
|
kernel1.set(5, ocl::KernelArg::PtrReadOnly(devMat));
|
2018-01-23 23:52:41 +08:00
|
|
|
kernel1.set(6, ocl::KernelArg::PtrReadOnly(bnorm_weight));
|
|
|
|
kernel1.set(7, ocl::KernelArg::PtrReadOnly(bnorm_bias));
|
|
|
|
kernel1.set(8, (int)inpMat.size[1]);
|
|
|
|
kernel1.set(9, (float)relu_slope);
|
|
|
|
kernel1.set(10, ocl::KernelArg::PtrWriteOnly(outMat));
|
2018-01-10 21:56:42 +08:00
|
|
|
ret = kernel1.run(2, global, NULL, false);
|
|
|
|
if (!ret)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2018-01-10 21:56:42 +08:00
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
|
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
|
|
{
|
|
|
|
Mat &inpBlob = *inputs[inpIdx];
|
|
|
|
Mat &outBlob = outputs[inpIdx];
|
|
|
|
|
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
|
|
int i, newRows = 1;
|
|
|
|
for( i = 0; i < splitDim; i++ )
|
|
|
|
newRows *= inpBlob.size[i];
|
|
|
|
Mat inpMat = inpBlob.reshape(1, newRows);
|
|
|
|
Mat outMat = outBlob.reshape(1, newRows);
|
|
|
|
|
|
|
|
Scalar mean, dev;
|
|
|
|
for ( i = 0; i < newRows; i++)
|
|
|
|
{
|
|
|
|
Mat inpRow = inpMat.row(i);
|
|
|
|
Mat outRow = outMat.row(i);
|
|
|
|
|
|
|
|
cv::meanStdDev(inpRow, mean, (normVariance) ? dev : noArray());
|
|
|
|
double alpha = (normVariance) ? 1/(eps + dev[0]) : 1;
|
|
|
|
inpRow.convertTo(outRow, outRow.type(), alpha, -mean[0] * alpha);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
(void)outputs; // suppress unused variable warning
|
|
|
|
long flops = 0;
|
|
|
|
for(int i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += 6*total(inputs[i]) + 3*total(inputs[i], 0, normVariance ? 2 : 1);
|
|
|
|
}
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<MVNLayer> MVNLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<MVNLayer>(new MVNLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|