opencv/modules/dnn/src/op_cuda.hpp

391 lines
15 KiB
C++
Raw Normal View History

Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_OP_CUDA_HPP
#define OPENCV_DNN_SRC_OP_CUDA_HPP
#ifdef HAVE_CUDA
#include "cuda4dnn/csl/stream.hpp"
#include "cuda4dnn/csl/cublas.hpp"
#include "cuda4dnn/csl/cudnn.hpp"
#include "cuda4dnn/csl/tensor.hpp"
#include "cuda4dnn/csl/memory.hpp"
#include "cuda4dnn/csl/fp16.hpp"
#include "cuda4dnn/csl/workspace.hpp"
#endif
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core.hpp>
#include <cstddef>
#include <memory>
#include <iterator>
namespace cv { namespace dnn {
constexpr bool IS_DNN_CUDA_TARGET(int id) {
return id == DNN_TARGET_CUDA_FP16 || id == DNN_TARGET_CUDA;
}
constexpr bool haveCUDA() {
#ifdef HAVE_CUDA
return true;
#else
return false;
#endif
}
#ifdef HAVE_CUDA
namespace cuda4dnn { namespace csl {
struct CSLContext {
Stream stream;
cublas::Handle cublas_handle;
cudnn::Handle cudnn_handle;
};
/** @brief creates Tensor object from cv::Mat (only the header is created, i.e. no data is copied)
*
* \tparam T element type for the tensor
* \param[in] mat cv::Mat from which the shape must be inferred
*
* \return a Tensor object with the shape of \p mat
*/
template <class T>
Tensor<T> makeTensorHeader(const Mat& mat) {
auto sizes = shape(mat);
return Tensor<T>(std::begin(sizes), std::end(sizes));
}
/** @brief copies data from a cv::Mat to TensorType
*
* \tparam T the type of the elements contained in TensorType object
*
* \param[in] srcMat source matrix
* \param[out] destTensor destination tensor
* \param stream CUDA stream to use for the memory transfer
*
* The memory copy starts from begining \p srcMat. The number of elements copied is
* equal to the number of elements in \p destTensor.
*
* Pre-conditions:
* - \p srcMat must contain elements of type CV_32F
* - the size of \p srcMat must be larger than or equal to the size of \p destTensor
*
* @note best performance when \p srcMat is continuous and page-locked
* @note blocks calling thread if \p srcMat is not page-locked
*/
template <class T>
void copyMatToTensor(const Mat& srcMat, const TensorSpan<T> destTensor, const Stream& stream);
template <> inline
void copyMatToTensor(const Mat& srcMat, const TensorSpan<half> destTensor, const Stream& stream) {
/* should perhaps convert cv::Mat of different type to the required type and copy */
CV_Assert(srcMat.type() == CV_32F);
CV_Assert(srcMat.total() >= destTensor.size());
Mat temp;
srcMat.convertTo(temp, CV_16F);
CV_Assert(temp.isContinuous());
memcpy<half>(destTensor.get(), reinterpret_cast<half*>(temp.data), destTensor.size(), stream);
}
template <> inline
void copyMatToTensor(const Mat& srcMat, const TensorSpan<float> destTensor, const Stream& stream) {
/* should perhaps convert cv::Mat of different type to the required type and copy */
CV_Assert(srcMat.type() == CV_32F);
CV_Assert(srcMat.total() >= destTensor.size());
Mat temp = srcMat.isContinuous() ? srcMat : srcMat.clone();
CV_Assert(temp.isContinuous());
memcpy<float>(destTensor.get(), reinterpret_cast<float*>(temp.data), destTensor.size(), stream);
}
/** @brief copies data from a TensorType to a cv::Mat
*
* \tparam T the type of the elements contained in TensorType object
*
* \param[in] srcTensor source tensor
* \param[out] destMat destination matrix
* \param stream CUDA stream to use for the memory transfer
*
* The entire memory block held by the \p srcTensor is copied to \p destMat.
*
* Pre-conditions:
* - \p destMat must contain elements of type CV_32F
* - the size of \p destMat must be larger than or equal to the size of \p srcTensor
*
* @note best performance when \p destMat is continuous and page-locked
* @note blocks calling thread if \p destMat is not page-locked
*/
template <class T>
void copyTensorToMat(TensorView<T> srcTensor, Mat& destMat, const Stream& stream);
template <> inline
void copyTensorToMat(TensorView<half> srcTensor, Mat& destMat, const Stream& stream) {
CV_Assert(destMat.type() == CV_32F);
CV_Assert(destMat.total() >= srcTensor.size());
Mat temp(shape(destMat), CV_16F);
CV_Assert(temp.isContinuous());
memcpy<half>(reinterpret_cast<half*>(temp.data), srcTensor.get(), srcTensor.size(), stream);
temp.convertTo(destMat, CV_32F);
}
template <> inline
void copyTensorToMat(TensorView<float> srcTensor, Mat& destMat, const Stream& stream) {
CV_Assert(destMat.type() == CV_32F);
CV_Assert(destMat.total() >= srcTensor.size());
Mat temp = destMat.isContinuous() ? destMat : destMat.clone();
CV_Assert(temp.isContinuous());
memcpy<float>(reinterpret_cast<float*>(temp.data), srcTensor.get(), srcTensor.size(), stream);
if (temp.data != destMat.data)
temp.copyTo(destMat);
}
}} /* namespace cuda4dnn::csl */
/** base class for CUDA operation nodes (for all supported targets) */
class CUDABackendNode : public BackendNode {
public:
CUDABackendNode() : BackendNode(DNN_BACKEND_CUDA) { }
virtual ~CUDABackendNode() { }
virtual void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
cuda4dnn::csl::Workspace& workspace) = 0;
virtual std::size_t get_workspace_memory_in_bytes() const noexcept { return 0; }
};
/** @brief utility function which creates CUDA node of correct type from `targetId`
*
* CUDA operation nodes take the type of data they operate on as a template parameter.
* For example, ConcatOp<float> is an operation node which concats tensors of `float` type
* into a tensor of `float` type.
*
* This utility function aids the creation of nodes of different types and eliminates the
* need for CUDA target constants (`DNN_TARGET_XXX`) to appear in the operation code which
* reduces coupling between modules.
*
* Example:
* template <class T>
* class ConcatOp : public CUDABackendNode;
*
* // returns a cv::Ptr to a ConcatOp<half> object
* auto node = make_cuda_node<ConcatOp>(DNN_TARGET_CUDA_FP16, axis);
*
* // returns a cv::Ptr to a ConcatOp<float> object
* auto node = make_cuda_node<ConcatOp>(DNN_TARGET_CUDA, axis);
*/
template <template <class> class NodeType, class ...Args>
cv::Ptr<BackendNode> make_cuda_node(int targetId, Args&& ...args) {
switch (targetId)
{
case DNN_TARGET_CUDA_FP16:
return Ptr<BackendNode>(new NodeType<half>(std::forward<Args>(args)...));
case DNN_TARGET_CUDA:
return Ptr<BackendNode>(new NodeType<float>(std::forward<Args>(args)...));
default:
CV_Assert(IS_DNN_CUDA_TARGET(targetId));
}
return Ptr<BackendNode>();
}
/* base class for all CUDA backend/target wrappers */
class CUDABackendWrapper : public BackendWrapper {
public:
CUDABackendWrapper(int targetId) : BackendWrapper(DNN_BACKEND_CUDA, targetId) { }
virtual ~CUDABackendWrapper() { }
void copyToHost() override = 0;
void setHostDirty() override = 0;
virtual void copyToDevice() = 0;
virtual void setDeviceDirty() = 0;
virtual MatShape getShape() const noexcept = 0;
virtual std::size_t getRank() const noexcept = 0;
/** @note setting the stream updates the stream for all wrappers which use the same tensor */
virtual void setStream(cuda4dnn::csl::Stream stream) noexcept = 0;
};
template <class T, int TargetID>
class GenericCUDABackendWrapper final : public CUDABackendWrapper {
public:
using value_type = T;
using tensor_span_type = cuda4dnn::csl::TensorSpan<value_type>;
using tensor_view_type = cuda4dnn::csl::TensorView<value_type>;
/* Pre-conditions:
* - there must be no other instance of `GenericCUDABackendWrapper` which wraps the host memory used by `m`
* - the host memory must remain allocated throughout the lifetime of this object
*
* Post-conditions:
* - the host memory used by \p m "may" be page-locked
*/
GenericCUDABackendWrapper(Mat& m)
: CUDABackendWrapper(TargetID)
{
shape = cv::dnn::shape(m);
shared_block = std::make_shared<shared_block_type>();
shared_block->host_dirty = true;
shared_block->device_dirty = false;
shared_block->host = m;
try {
shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard(m.data, m.total() * m.elemSize());
} catch (...) {
/* a common reason for failure is that the host system (for example, a Jetson device) does not support it */
/* we ignore the failure as this is just an optimization and not a requirement */
}
shared_block->device = cuda4dnn::csl::ManagedPtr<T>(m.total());
}
GenericCUDABackendWrapper(const Ptr<BackendWrapper>& base_, const MatShape& shape_)
: CUDABackendWrapper(TargetID)
{
const Ptr<GenericCUDABackendWrapper> base = base_.dynamicCast<GenericCUDABackendWrapper>();
CV_Assert(base);
shape = shape_;
shared_block = base->shared_block;
}
static Ptr<BackendWrapper> create(Mat& m) {
return Ptr<BackendWrapper>(new GenericCUDABackendWrapper(m));
}
static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& base, const MatShape& shape) {
return Ptr<BackendWrapper>(new GenericCUDABackendWrapper(base, shape));
}
void copyToHost() override {
if (shared_block->device_dirty) {
shared_block->host_dirty = false;
shared_block->device_dirty = false;
/* If the wrapper is being reused, the device tensor might be larger in size than the wrapper.
* Using the device tensor does not give incorrect code but leads to unused region of memory being copied.
*
* We use a view to ensure that only the required region of memory is copied.
*/
auto view = tensor_view_type(shared_block->device.get(), std::begin(shape), std::end(shape));
cuda4dnn::csl::copyTensorToMat<T>(view, shared_block->host, shared_block->stream);
shared_block->stream.synchronize();
}
}
void setHostDirty() override {
shared_block->device_dirty = false;
shared_block->host_dirty = true;
}
void copyToDevice() override {
if (shared_block->host_dirty) {
shared_block->host_dirty = false;
shared_block->device_dirty = false;
auto span = tensor_span_type(shared_block->device.get(), std::begin(shape), std::end(shape));
cuda4dnn::csl::copyMatToTensor<T>(shared_block->host, span, shared_block->stream);
}
}
void setDeviceDirty() override {
shared_block->device_dirty = true;
shared_block->host_dirty = false;
}
MatShape getShape() const noexcept override { return shape; }
std::size_t getRank() const noexcept override { return shape.size(); }
void setStream(cuda4dnn::csl::Stream stream) noexcept override {
shared_block->stream = std::move(stream);
}
cv::Mat getMutableHostMat() noexcept {
copyToHost();
setHostDirty();
return shared_block->host;
}
const cv::Mat getImmutableHostMat() const noexcept {
copyToHost();
return shared_block->host;
}
/* Optimization Note: use getSpan() and getView() judiciously
*
* getSpan() is meant to be used when the memory is going to be modified
* getView() is meant to be used when the memory is only going to be read
*
* getSpan() marks the device memory as dirty but getView() does not
*
* getView() implicitly performs host to device memory transfer if required
* getSpan() does not perform any synchronization (use copyToDevice if sync. is required)
*/
tensor_span_type getSpan() noexcept {
setDeviceDirty();
return tensor_span_type(shared_block->device.get(), std::begin(shape), std::end(shape));
}
tensor_view_type getView() noexcept {
copyToDevice();
return tensor_view_type(shared_block->device.get(), std::begin(shape), std::end(shape));
}
private:
/* The same tensor memory can be reused by different layers whenever possible.
* Hence, it is possible for different backend warppers to point to the same memory.
* However, it may use only a part of that memory and have a different shape.
*
* We store the common information such as device tensor and its corresponding host memory in
* a shared block. The shared block is shared by all backend wrappers which use the same memory.
* The shape, which can be different for different wrappers, is stored as a member object.
*/
MatShape shape;
struct shared_block_type {
bool host_dirty;
bool device_dirty;
cv::Mat host;
cuda4dnn::csl::MemoryLockGuard memGuard; /* keeps host memory page-locked if possible */
cuda4dnn::csl::ManagedPtr<T> device;
cuda4dnn::csl::Stream stream;
};
std::shared_ptr<shared_block_type> shared_block;
};
using CUDABackendWrapperFP16 = GenericCUDABackendWrapper<half, DNN_TARGET_CUDA_FP16>;
using CUDABackendWrapperFP32 = GenericCUDABackendWrapper<float, DNN_TARGET_CUDA>;
template <class T> struct GetCUDABackendWrapperType_ { };
template <> struct GetCUDABackendWrapperType_<half> { typedef CUDABackendWrapperFP16 type; };
template <> struct GetCUDABackendWrapperType_<float> { typedef CUDABackendWrapperFP32 type; };
template <class T>
using GetCUDABackendWrapperType = typename GetCUDABackendWrapperType_<T>::type;
#endif
}} /* namespace cv::dnn */
#endif /* OPENCV_DNN_SRC_OP_CUDA_HPP */