opencv/modules/cudaarithm/src/cuda/bitwise_scalar.cu

172 lines
8.5 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/opencv_modules.hpp"
#ifndef HAVE_OPENCV_CUDEV
#error "opencv_cudev is required"
#else
#include "opencv2/cudev.hpp"
#include "opencv2/core/private.cuda.hpp"
using namespace cv::cudev;
void bitScalar(const GpuMat& src, cv::Scalar value, bool, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int op);
namespace
{
template <template <typename> class Op, typename T>
void bitScalarOp(const GpuMat& src, uint value, GpuMat& dst, Stream& stream)
{
gridTransformUnary(globPtr<T>(src), globPtr<T>(dst), bind2nd(Op<T>(), value), stream);
}
typedef void (*bit_scalar_func_t)(const GpuMat& src, uint value, GpuMat& dst, Stream& stream);
template <typename T, bit_scalar_func_t func> struct BitScalar
{
static void call(const GpuMat& src, cv::Scalar value, GpuMat& dst, Stream& stream)
{
func(src, cv::saturate_cast<T>(value[0]), dst, stream);
}
};
template <bit_scalar_func_t func> struct BitScalar4
{
static void call(const GpuMat& src, cv::Scalar value, GpuMat& dst, Stream& stream)
{
uint packedVal = 0;
packedVal |= cv::saturate_cast<uchar>(value[0]);
packedVal |= cv::saturate_cast<uchar>(value[1]) << 8;
packedVal |= cv::saturate_cast<uchar>(value[2]) << 16;
packedVal |= cv::saturate_cast<uchar>(value[3]) << 24;
func(src, packedVal, dst, stream);
}
};
template <int DEPTH, int cn> struct NppBitwiseCFunc
{
typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;
typedef NppStatus (*func_t)(const npp_type* pSrc1, int nSrc1Step, const npp_type* pConstants, npp_type* pDst, int nDstStep, NppiSize oSizeROI);
};
template <int DEPTH, int cn, typename NppBitwiseCFunc<DEPTH, cn>::func_t func> struct NppBitwiseC
{
typedef typename NppBitwiseCFunc<DEPTH, cn>::npp_type npp_type;
static void call(const GpuMat& src, cv::Scalar value, GpuMat& dst, Stream& _stream)
{
cudaStream_t stream = StreamAccessor::getStream(_stream);
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = src.cols;
oSizeROI.height = src.rows;
const npp_type pConstants[] =
{
cv::saturate_cast<npp_type>(value[0]),
cv::saturate_cast<npp_type>(value[1]),
cv::saturate_cast<npp_type>(value[2]),
cv::saturate_cast<npp_type>(value[3])
};
nppSafeCall( func(src.ptr<npp_type>(), static_cast<int>(src.step), pConstants, dst.ptr<npp_type>(), static_cast<int>(dst.step), oSizeROI) );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
};
}
void bitScalar(const GpuMat& src, cv::Scalar value, bool, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int op)
{
(void) mask;
typedef void (*func_t)(const GpuMat& src, cv::Scalar value, GpuMat& dst, Stream& stream);
static const func_t funcs[3][6][4] =
{
{
{BitScalar<uchar, bitScalarOp<bit_and, uchar> >::call , 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, BitScalar4< bitScalarOp<bit_and, uint> >::call},
{BitScalar<uchar, bitScalarOp<bit_and, uchar> >::call , 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, BitScalar4< bitScalarOp<bit_and, uint> >::call},
{BitScalar<ushort, bitScalarOp<bit_and, ushort> >::call, 0, NppBitwiseC<CV_16U, 3, nppiAndC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiAndC_16u_C4R>::call},
{BitScalar<ushort, bitScalarOp<bit_and, ushort> >::call, 0, NppBitwiseC<CV_16U, 3, nppiAndC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiAndC_16u_C4R>::call},
{BitScalar<uint, bitScalarOp<bit_and, uint> >::call , 0, NppBitwiseC<CV_32S, 3, nppiAndC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiAndC_32s_C4R>::call},
{BitScalar<uint, bitScalarOp<bit_and, uint> >::call , 0, NppBitwiseC<CV_32S, 3, nppiAndC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiAndC_32s_C4R>::call}
},
{
{BitScalar<uchar, bitScalarOp<bit_or, uchar> >::call , 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, BitScalar4< bitScalarOp<bit_or, uint> >::call},
{BitScalar<uchar, bitScalarOp<bit_or, uchar> >::call , 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, BitScalar4< bitScalarOp<bit_or, uint> >::call},
{BitScalar<ushort, bitScalarOp<bit_or, ushort> >::call, 0, NppBitwiseC<CV_16U, 3, nppiOrC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiOrC_16u_C4R>::call},
{BitScalar<ushort, bitScalarOp<bit_or, ushort> >::call, 0, NppBitwiseC<CV_16U, 3, nppiOrC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiOrC_16u_C4R>::call},
{BitScalar<uint, bitScalarOp<bit_or, uint> >::call , 0, NppBitwiseC<CV_32S, 3, nppiOrC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiOrC_32s_C4R>::call},
{BitScalar<uint, bitScalarOp<bit_or, uint> >::call , 0, NppBitwiseC<CV_32S, 3, nppiOrC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiOrC_32s_C4R>::call}
},
{
{BitScalar<uchar, bitScalarOp<bit_xor, uchar> >::call , 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, BitScalar4< bitScalarOp<bit_xor, uint> >::call},
{BitScalar<uchar, bitScalarOp<bit_xor, uchar> >::call , 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, BitScalar4< bitScalarOp<bit_xor, uint> >::call},
{BitScalar<ushort, bitScalarOp<bit_xor, ushort> >::call, 0, NppBitwiseC<CV_16U, 3, nppiXorC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiXorC_16u_C4R>::call},
{BitScalar<ushort, bitScalarOp<bit_xor, ushort> >::call, 0, NppBitwiseC<CV_16U, 3, nppiXorC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiXorC_16u_C4R>::call},
{BitScalar<uint, bitScalarOp<bit_xor, uint> >::call , 0, NppBitwiseC<CV_32S, 3, nppiXorC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiXorC_32s_C4R>::call},
{BitScalar<uint, bitScalarOp<bit_xor, uint> >::call , 0, NppBitwiseC<CV_32S, 3, nppiXorC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiXorC_32s_C4R>::call}
}
};
const int depth = src.depth();
const int cn = src.channels();
CV_DbgAssert( depth <= CV_32F );
CV_DbgAssert( cn == 1 || cn == 3 || cn == 4 );
CV_DbgAssert( mask.empty() );
CV_DbgAssert( op >= 0 && op < 3 );
funcs[op][depth][cn - 1](src, value, dst, stream);
}
#endif