opencv/modules/gpu/src/cuda/match_template.cu

296 lines
10 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <cufft.h>
#include "internal_shared.hpp"
#include <iostream>
using namespace std;
using namespace cv::gpu;
namespace cv { namespace gpu { namespace imgproc {
texture<unsigned char, 2> imageTex_8U;
texture<unsigned char, 2> templTex_8U;
2010-12-10 18:23:32 +08:00
__global__ void matchTemplateNaiveKernel_8U_SQDIFF(int w, int h,
DevMem2Df result)
{
int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < result.cols && y < result.rows)
{
float sum = 0.f;
float delta;
for (int i = 0; i < h; ++i)
{
for (int j = 0; j < w; ++j)
{
delta = (float)tex2D(imageTex_8U, x + j, y + i) -
(float)tex2D(templTex_8U, j, i);
sum += delta * delta;
}
}
result.ptr(y)[x] = sum;
}
}
2010-12-10 18:23:32 +08:00
void matchTemplateNaive_8U_SQDIFF(const DevMem2D image, const DevMem2D templ,
DevMem2Df result)
{
dim3 threads(32, 8);
dim3 grid(divUp(image.cols - templ.cols + 1, threads.x),
2010-12-10 18:23:32 +08:00
divUp(image.rows - templ.rows + 1, threads.y));
cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
cudaBindTexture2D(0, imageTex_8U, image.data, desc, image.cols, image.rows, image.step);
cudaBindTexture2D(0, templTex_8U, templ.data, desc, templ.cols, templ.rows, templ.step);
imageTex_8U.filterMode = cudaFilterModePoint;
templTex_8U.filterMode = cudaFilterModePoint;
matchTemplateNaiveKernel_8U_SQDIFF<<<grid, threads>>>(templ.cols, templ.rows, result);
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall(cudaUnbindTexture(imageTex_8U));
cudaSafeCall(cudaUnbindTexture(templTex_8U));
}
texture<float, 2> imageTex_32F;
texture<float, 2> templTex_32F;
2010-12-10 18:23:32 +08:00
__global__ void matchTemplateNaiveKernel_32F_SQDIFF(int w, int h,
DevMem2Df result)
{
int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < result.cols && y < result.rows)
{
float sum = 0.f;
float delta;
for (int i = 0; i < h; ++i)
{
for (int j = 0; j < w; ++j)
{
delta = tex2D(imageTex_32F, x + j, y + i) -
tex2D(templTex_32F, j, i);
sum += delta * delta;
}
}
result.ptr(y)[x] = sum;
}
}
2010-12-10 18:23:32 +08:00
void matchTemplateNaive_32F_SQDIFF(const DevMem2D image, const DevMem2D templ,
DevMem2Df result)
{
dim3 threads(32, 8);
dim3 grid(divUp(image.cols - templ.cols + 1, threads.x),
2010-12-10 18:23:32 +08:00
divUp(image.rows - templ.rows + 1, threads.y));
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();
cudaBindTexture2D(0, imageTex_32F, image.data, desc, image.cols, image.rows, image.step);
cudaBindTexture2D(0, templTex_32F, templ.data, desc, templ.cols, templ.rows, templ.step);
imageTex_8U.filterMode = cudaFilterModePoint;
templTex_8U.filterMode = cudaFilterModePoint;
matchTemplateNaiveKernel_32F_SQDIFF<<<grid, threads>>>(templ.cols, templ.rows, result);
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall(cudaUnbindTexture(imageTex_32F));
cudaSafeCall(cudaUnbindTexture(templTex_32F));
}
2010-12-10 18:23:32 +08:00
__global__ void multiplyAndNormalizeSpectsKernel(
int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < n)
{
cufftComplex v = cuCmulf(a[x], cuConjf(b[x]));
c[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
}
}
2010-12-10 18:23:32 +08:00
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c)
{
dim3 threads(256);
dim3 grid(divUp(n, threads.x));
multiplyAndNormalizeSpectsKernel<<<grid, threads>>>(n, scale, a, b, c);
cudaSafeCall(cudaThreadSynchronize());
}
2010-12-10 18:23:32 +08:00
__global__ void matchTemplatePreparedKernel_8U_SQDIFF(
int w, int h, const PtrStep_<unsigned long long> image_sqsum,
unsigned int templ_sqsum, DevMem2Df result)
2010-12-10 18:23:32 +08:00
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < result.cols && y < result.rows)
{
float image_sq = (float)(
(image_sqsum.ptr(y + h)[x + w] - image_sqsum.ptr(y)[x + w]) -
(image_sqsum.ptr(y + h)[x] - image_sqsum.ptr(y)[x]));
2010-12-10 18:23:32 +08:00
float ccorr = result.ptr(y)[x];
result.ptr(y)[x] = image_sq - 2.f * ccorr + templ_sqsum;
2010-12-10 18:23:32 +08:00
}
}
void matchTemplatePrepared_8U_SQDIFF(
int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
unsigned int templ_sqsum, DevMem2Df result)
2010-12-10 18:23:32 +08:00
{
dim3 threads(32, 8);
dim3 grid(divUp(result.cols, threads.x), divUp(result.rows, threads.y));
matchTemplatePreparedKernel_8U_SQDIFF<<<grid, threads>>>(
w, h, image_sqsum, templ_sqsum, result);
cudaSafeCall(cudaThreadSynchronize());
}
__global__ void matchTemplatePreparedKernel_8U_SQDIFF_NORMED(
int w, int h, const PtrStep_<unsigned long long> image_sqsum,
unsigned int templ_sqsum, DevMem2Df result)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < result.cols && y < result.rows)
{
float image_sq = (float)(
(image_sqsum.ptr(y + h)[x + w] - image_sqsum.ptr(y)[x + w]) -
(image_sqsum.ptr(y + h)[x] - image_sqsum.ptr(y)[x]));
float ccorr = result.ptr(y)[x];
result.ptr(y)[x] = (image_sq - 2.f * ccorr + templ_sqsum) *
rsqrtf(image_sq * templ_sqsum);
}
}
void matchTemplatePrepared_8U_SQDIFF_NORMED(
int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
unsigned int templ_sqsum, DevMem2Df result)
{
dim3 threads(32, 8);
dim3 grid(divUp(result.cols, threads.x), divUp(result.rows, threads.y));
matchTemplatePreparedKernel_8U_SQDIFF_NORMED<<<grid, threads>>>(
w, h, image_sqsum, templ_sqsum, result);
cudaSafeCall(cudaThreadSynchronize());
}
__global__ void matchTemplatePreparedKernel_8U_CCOEFF(
int w, int h, float scale, const PtrStep_<unsigned int> image_sum,
DevMem2Df result)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < result.cols && y < result.rows)
{
float ccorr = result.ptr(y)[x];
float image_sum_ = (float)(
(image_sum.ptr(y + h)[x + w] - image_sum.ptr(y)[x + w]) -
(image_sum.ptr(y + h)[x] - image_sum.ptr(y)[x]));
result.ptr(y)[x] = ccorr - image_sum_ * scale;
}
}
void matchTemplatePrepared_8U_CCOEFF(
int w, int h, const DevMem2D_<unsigned int> image_sum,
unsigned int templ_sum, DevMem2Df result)
{
dim3 threads(32, 8);
dim3 grid(divUp(result.cols, threads.x), divUp(result.rows, threads.y));
matchTemplatePreparedKernel_8U_CCOEFF<<<grid, threads>>>(
w, h, (float)templ_sum / (w * h), image_sum, result);
cudaSafeCall(cudaThreadSynchronize());
}
__global__ void normalizeKernel_8U(
int w, int h, const PtrStep_<unsigned long long> image_sqsum,
unsigned int templ_sqsum, DevMem2Df result)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < result.cols && y < result.rows)
{
float image_sq = (float)(
(image_sqsum.ptr(y + h)[x + w] - image_sqsum.ptr(y)[x + w]) -
(image_sqsum.ptr(y + h)[x] - image_sqsum.ptr(y)[x]));
result.ptr(y)[x] *= rsqrtf(image_sq * templ_sqsum);
}
}
void normalize_8U(int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
unsigned int templ_sqsum, DevMem2Df result)
{
dim3 threads(32, 8);
dim3 grid(divUp(result.cols, threads.x), divUp(result.rows, threads.y));
normalizeKernel_8U<<<grid, threads>>>(w, h, image_sqsum, templ_sqsum, result);
2010-12-10 18:23:32 +08:00
cudaSafeCall(cudaThreadSynchronize());
}
}}}