2022-09-28 17:47:32 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
/*
|
|
|
|
StackBlur - a fast almost Gaussian Blur
|
|
|
|
Theory: http://underdestruction.com/2004/02/25/stackblur-2004
|
|
|
|
The code has been borrowed from (https://github.com/flozz/StackBlur)
|
|
|
|
and adapted for OpenCV by Zihao Mu.
|
|
|
|
|
|
|
|
Below is the original copyright
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Copyright (c) 2010 Mario Klingemann
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person
|
|
|
|
obtaining a copy of this software and associated documentation
|
|
|
|
files (the "Software"), to deal in the Software without
|
|
|
|
restriction, including without limitation the rights to use,
|
|
|
|
copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
copies of the Software, and to permit persons to whom the
|
|
|
|
Software is furnished to do so, subject to the following
|
|
|
|
conditions:
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
|
|
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
|
|
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
|
|
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
#define STACKBLUR_MAX_RADIUS 254
|
|
|
|
|
|
|
|
static unsigned short const stackblurMul[255] =
|
|
|
|
{
|
|
|
|
512,512,456,512,328,456,335,512,405,328,271,456,388,335,292,512,
|
|
|
|
454,405,364,328,298,271,496,456,420,388,360,335,312,292,273,512,
|
|
|
|
482,454,428,405,383,364,345,328,312,298,284,271,259,496,475,456,
|
|
|
|
437,420,404,388,374,360,347,335,323,312,302,292,282,273,265,512,
|
|
|
|
497,482,468,454,441,428,417,405,394,383,373,364,354,345,337,328,
|
|
|
|
320,312,305,298,291,284,278,271,265,259,507,496,485,475,465,456,
|
|
|
|
446,437,428,420,412,404,396,388,381,374,367,360,354,347,341,335,
|
|
|
|
329,323,318,312,307,302,297,292,287,282,278,273,269,265,261,512,
|
|
|
|
505,497,489,482,475,468,461,454,447,441,435,428,422,417,411,405,
|
|
|
|
399,394,389,383,378,373,368,364,359,354,350,345,341,337,332,328,
|
|
|
|
324,320,316,312,309,305,301,298,294,291,287,284,281,278,274,271,
|
|
|
|
268,265,262,259,257,507,501,496,491,485,480,475,470,465,460,456,
|
|
|
|
451,446,442,437,433,428,424,420,416,412,408,404,400,396,392,388,
|
|
|
|
385,381,377,374,370,367,363,360,357,354,350,347,344,341,338,335,
|
|
|
|
332,329,326,323,320,318,315,312,310,307,304,302,299,297,294,292,
|
|
|
|
289,287,285,282,280,278,275,273,271,269,267,265,263,261,259
|
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned char const stackblurShr[255] =
|
|
|
|
{
|
|
|
|
9, 11, 12, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17,
|
|
|
|
17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19,
|
|
|
|
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20,
|
|
|
|
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21,
|
|
|
|
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
|
|
|
|
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22,
|
|
|
|
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
|
|
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23,
|
|
|
|
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
|
|
|
|
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
|
|
|
|
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
|
|
|
|
23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
|
|
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
|
|
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
|
|
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
|
|
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
|
|
|
|
};
|
|
|
|
|
|
|
|
namespace cv{
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
2022-09-28 17:47:32 +08:00
|
|
|
template<typename T>
|
|
|
|
inline int opRow(const T* , T* , const std::vector<ushort>& , const float , const int radius, const int CN, const int )
|
|
|
|
{
|
|
|
|
return radius * CN;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opRow<uchar>(const uchar* srcPtr, uchar* dstPtr, const std::vector<ushort>& kVec, const float , const int radius, const int CN, const int widthCN)
|
|
|
|
{
|
|
|
|
int kernelSize = (int)kVec.size();
|
|
|
|
|
|
|
|
int i = radius * CN;
|
|
|
|
if (radius > STACKBLUR_MAX_RADIUS)
|
|
|
|
return i;
|
|
|
|
|
|
|
|
const int mulValTab= stackblurMul[radius];
|
|
|
|
const int shrValTab= stackblurShr[radius];
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE = VTraits<v_uint8>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
if (kernelSize == 3)
|
|
|
|
{
|
|
|
|
v_uint32 v_mulVal = vx_setall_u32(mulValTab);
|
|
|
|
for (; i <= widthCN - VEC_LINE; i += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_uint16 x0l, x0h, x1l, x1h, x2l, x2h;
|
|
|
|
v_expand(vx_load(srcPtr + i - CN), x0l, x0h);
|
|
|
|
v_expand(vx_load(srcPtr + i), x1l, x1h);
|
|
|
|
v_expand(vx_load(srcPtr + i + CN), x2l, x2h);
|
|
|
|
|
|
|
|
x1l = v_add_wrap(v_add_wrap(x1l, x1l), v_add_wrap(x0l, x2l));
|
|
|
|
x1h = v_add_wrap(v_add_wrap(x1h, x1h), v_add_wrap(x0h, x2h));
|
|
|
|
|
|
|
|
v_uint32 y00, y01, y10, y11;
|
|
|
|
v_expand(x1l, y00, y01);
|
|
|
|
v_expand(x1h, y10, y11);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
y00 = v_shr(v_mul(y00, v_mulVal), shrValTab);
|
|
|
|
y01 = v_shr(v_mul(y01, v_mulVal), shrValTab);
|
|
|
|
y10 = v_shr(v_mul(y10, v_mulVal), shrValTab);
|
|
|
|
y11 = v_shr(v_mul(y11, v_mulVal), shrValTab);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(dstPtr + i, v_pack(v_pack(y00, y01), v_pack(y10, y11)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const ushort * kx = kVec.data() + kernelSize/2;
|
|
|
|
v_int32 v_mulVal = vx_setall_s32(mulValTab);
|
|
|
|
v_int16 k0 = vx_setall_s16((short)(kx[0]));
|
|
|
|
|
|
|
|
srcPtr += i;
|
|
|
|
for( ; i <= widthCN - VEC_LINE; i += VEC_LINE, srcPtr += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_uint8 v_src = vx_load(srcPtr);
|
|
|
|
v_int32 s0, s1, s2, s3;
|
|
|
|
v_mul_expand(v_reinterpret_as_s16(v_expand_low(v_src)), k0, s0, s1);
|
|
|
|
v_mul_expand(v_reinterpret_as_s16(v_expand_high(v_src)), k0, s2, s3);
|
|
|
|
|
|
|
|
int k = 1, j = CN;
|
|
|
|
for (; k <= kernelSize / 2 - 1; k += 2, j += 2 * CN)
|
|
|
|
{
|
|
|
|
v_int16 k12 = v_reinterpret_as_s16(vx_setall_s32(((int)kx[k] & 0xFFFF) | ((int)kx[k + 1] << 16)));
|
|
|
|
|
|
|
|
v_uint8 v_src0 = vx_load(srcPtr - j);
|
|
|
|
v_uint8 v_src1 = vx_load(srcPtr - j - CN);
|
|
|
|
v_uint8 v_src2 = vx_load(srcPtr + j);
|
|
|
|
v_uint8 v_src3 = vx_load(srcPtr + j + CN);
|
|
|
|
|
|
|
|
v_int16 xl, xh;
|
2023-09-19 13:52:42 +08:00
|
|
|
v_zip(v_reinterpret_as_s16(v_add(v_expand_low(v_src0), v_expand_low(v_src2))), v_reinterpret_as_s16(v_add(v_expand_low(v_src1), v_expand_low(v_src3))), xl, xh);
|
|
|
|
s0 = v_add(s0, v_dotprod(xl, k12));
|
|
|
|
s1 = v_add(s1, v_dotprod(xh, k12));
|
|
|
|
v_zip(v_reinterpret_as_s16(v_add(v_expand_high(v_src0), v_expand_high(v_src2))), v_reinterpret_as_s16(v_add(v_expand_high(v_src1), v_expand_high(v_src3))), xl, xh);
|
|
|
|
s2 = v_add(s2, v_dotprod(xl, k12));
|
|
|
|
s3 = v_add(s3, v_dotprod(xh, k12));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
if( k < kernelSize / 2 + 1 )
|
|
|
|
{
|
|
|
|
v_int16 k1 = vx_setall_s16((short)(kx[k]));
|
|
|
|
|
|
|
|
v_uint8 v_src0 = vx_load(srcPtr - j);
|
|
|
|
v_uint8 v_src1 = vx_load(srcPtr + j);
|
|
|
|
|
|
|
|
v_int16 xl, xh;
|
|
|
|
v_zip(v_reinterpret_as_s16(v_expand_low(v_src0)), v_reinterpret_as_s16(v_expand_low(v_src1)), xl, xh);
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_add(s0, v_dotprod(xl, k1));
|
|
|
|
s1 = v_add(s1, v_dotprod(xh, k1));
|
2022-09-28 17:47:32 +08:00
|
|
|
v_zip(v_reinterpret_as_s16(v_expand_high(v_src0)), v_reinterpret_as_s16(v_expand_high(v_src1)), xl, xh);
|
2023-09-19 13:52:42 +08:00
|
|
|
s2 = v_add(s2, v_dotprod(xl, k1));
|
|
|
|
s3 = v_add(s3, v_dotprod(xh, k1));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_shr(v_mul(s0, v_mulVal), shrValTab);
|
|
|
|
s1 = v_shr(v_mul(s1, v_mulVal), shrValTab);
|
|
|
|
s2 = v_shr(v_mul(s2, v_mulVal), shrValTab);
|
|
|
|
s3 = v_shr(v_mul(s3, v_mulVal), shrValTab);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(dstPtr + i, v_pack(v_reinterpret_as_u16(v_pack(s0, s1)), v_reinterpret_as_u16(v_pack(s2, s3))));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opRow<ushort>(const ushort* srcPtr, ushort* dstPtr, const std::vector<ushort>& kVec, const float , const int radius, const int CN, const int widthCN)
|
|
|
|
{
|
|
|
|
int kernelSize = (int)kVec.size();
|
|
|
|
|
|
|
|
int i = radius * CN;
|
|
|
|
if (radius > STACKBLUR_MAX_RADIUS)
|
|
|
|
return i;
|
|
|
|
|
|
|
|
const int mulValTab= stackblurMul[radius];
|
|
|
|
const int shrValTab= stackblurShr[radius];
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE = VTraits<v_uint16>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_uint32 v_mulVal = vx_setall_u32(mulValTab);
|
|
|
|
if (kernelSize == 3)
|
|
|
|
{
|
|
|
|
for (; i <= widthCN - VEC_LINE; i += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_uint32 x0l, x0h, x1l, x1h, x2l, x2h;
|
|
|
|
v_expand(vx_load(srcPtr + i - CN), x0l, x0h);
|
|
|
|
v_expand(vx_load(srcPtr + i), x1l, x1h);
|
|
|
|
v_expand(vx_load(srcPtr + i + CN), x2l, x2h);
|
|
|
|
|
|
|
|
x1l = v_add(v_add(x1l, x1l), v_add(x0l, x2l));
|
|
|
|
x1h = v_add(v_add(x1h, x1h), v_add(x0h, x2h));
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + i, v_pack(v_shr(v_mul(x1l, v_mulVal), shrValTab), v_shr(v_mul(x1h, v_mulVal), shrValTab)));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const ushort * kx = kVec.data() + kernelSize/2;
|
|
|
|
v_uint16 k0 = vx_setall_u16(kx[0]);
|
|
|
|
|
|
|
|
srcPtr += i;
|
|
|
|
for( ; i <= widthCN - VEC_LINE; i += VEC_LINE, srcPtr += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_uint16 v_src = vx_load(srcPtr);
|
|
|
|
v_uint32 s0, s1;
|
|
|
|
|
|
|
|
v_mul_expand(v_src, k0, s0, s1);
|
|
|
|
|
|
|
|
int k = 1, j = CN;
|
|
|
|
for (; k <= kernelSize / 2 - 1; k += 2, j += 2*CN)
|
|
|
|
{
|
|
|
|
v_uint16 k1 = vx_setall_u16(kx[k]);
|
|
|
|
v_uint16 k2 = vx_setall_u16(kx[k + 1]);
|
|
|
|
|
|
|
|
v_uint32 y0, y1;
|
2023-09-19 13:52:42 +08:00
|
|
|
v_mul_expand(v_add(vx_load(srcPtr - j), vx_load(srcPtr + j)), k1, y0, y1);
|
|
|
|
s0 = v_add(s0, y0);
|
|
|
|
s1 = v_add(s1, y1);
|
|
|
|
v_mul_expand(v_add(vx_load(srcPtr - j - CN), vx_load(srcPtr + j + CN)), k2, y0, y1);
|
|
|
|
s0 = v_add(s0, y0);
|
|
|
|
s1 = v_add(s1, y1);
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
if( k < kernelSize / 2 + 1 )
|
|
|
|
{
|
|
|
|
v_uint16 k1 = vx_setall_u16(kx[k]);
|
|
|
|
|
|
|
|
v_uint32 y0, y1;
|
2023-09-19 13:52:42 +08:00
|
|
|
v_mul_expand(v_add(vx_load(srcPtr - j), vx_load(srcPtr + j)), k1, y0, y1);
|
|
|
|
s0 = v_add(s0, y0);
|
|
|
|
s1 = v_add(s1, y1);
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_shr(v_mul(s0, v_mulVal), shrValTab);
|
|
|
|
s1 = v_shr(v_mul(s1, v_mulVal), shrValTab);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(dstPtr + i, v_pack(s0, s1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opRow<short>(const short* srcPtr, short* dstPtr, const std::vector<ushort>& kVec, const float , const int radius, const int CN, const int widthCN)
|
|
|
|
{
|
|
|
|
int kernelSize = (int)kVec.size();
|
|
|
|
int i = radius * CN;
|
|
|
|
|
|
|
|
if (radius > STACKBLUR_MAX_RADIUS)
|
|
|
|
return i;
|
|
|
|
|
|
|
|
const int mulValTab= stackblurMul[radius];
|
|
|
|
const int shrValTab= stackblurShr[radius];
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE = VTraits<v_int16>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
v_int32 v_mulVal = vx_setall_s32(mulValTab);
|
|
|
|
|
|
|
|
if (kernelSize == 3)
|
|
|
|
{
|
|
|
|
for (; i <= widthCN - VEC_LINE; i += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_int32 x0l, x0h, x1l, x1h, x2l, x2h;
|
|
|
|
v_expand(vx_load(srcPtr + i - CN), x0l, x0h);
|
|
|
|
v_expand(vx_load(srcPtr + i), x1l, x1h);
|
|
|
|
v_expand(vx_load(srcPtr + i + CN), x2l, x2h);
|
|
|
|
|
|
|
|
x1l = v_add(v_add(x1l, x1l), v_add(x0l, x2l));
|
|
|
|
x1h = v_add(v_add(x1h, x1h), v_add(x0h, x2h));
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + i, v_pack(v_shr(v_mul(x1l, v_mulVal), shrValTab), v_shr(v_mul(x1h, v_mulVal), shrValTab)));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const ushort * kx = kVec.data() + kernelSize/2;
|
|
|
|
v_int16 k0 = vx_setall_s16((short)(kx[0]));
|
|
|
|
|
|
|
|
srcPtr += i;
|
|
|
|
for( ; i <= widthCN - VEC_LINE; i += VEC_LINE, srcPtr += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_int16 v_src = vx_load(srcPtr);
|
|
|
|
v_int32 s0, s1;
|
|
|
|
v_mul_expand(v_src, k0, s0, s1);
|
|
|
|
|
|
|
|
int k = 1, j = CN;
|
|
|
|
for (; k <= kernelSize / 2 - 1; k += 2, j += 2 * CN)
|
|
|
|
{
|
|
|
|
v_int16 k1 = vx_setall_s16((short)kx[k]);
|
|
|
|
v_int16 k2 = vx_setall_s16((short)kx[k + 1]);
|
|
|
|
|
|
|
|
v_int32 y0, y1;
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_mul_expand(v_add(vx_load(srcPtr - j), vx_load(srcPtr + j)), k1, y0, y1);
|
|
|
|
s0 = v_add(s0, y0);
|
|
|
|
s1 = v_add(s1, y1);
|
|
|
|
v_mul_expand(v_add(vx_load(srcPtr - j - CN), vx_load(srcPtr + j + CN)), k2, y0, y1);
|
|
|
|
s0 = v_add(s0, y0);
|
|
|
|
s1 = v_add(s1, y1);
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
if( k < kernelSize / 2 + 1 )
|
|
|
|
{
|
|
|
|
v_int16 k1 = vx_setall_s16((short)kx[k]);
|
|
|
|
v_int32 y0, y1;
|
2023-09-19 13:52:42 +08:00
|
|
|
v_mul_expand(v_add(vx_load(srcPtr - j), vx_load(srcPtr + j)), k1, y0, y1);
|
|
|
|
s0 = v_add(s0, y0);
|
|
|
|
s1 = v_add(s1, y1);
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_shr(v_mul(s0, v_mulVal), shrValTab);
|
|
|
|
s1 = v_shr(v_mul(s1, v_mulVal), shrValTab);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(dstPtr + i, v_pack(s0, s1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opRow<float>(const float* srcPtr, float* dstPtr, const std::vector<ushort>& kVec, const float mulVal, const int radius, const int CN, const int widthCN)
|
|
|
|
{
|
|
|
|
int kernelSize = (int)kVec.size();
|
|
|
|
int i = radius * CN;
|
|
|
|
|
|
|
|
v_float32 v_mulVal = vx_setall_f32(mulVal);
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE = VTraits<v_float32>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
const int VEC_LINE4 = VEC_LINE * 4;
|
|
|
|
|
|
|
|
if (kernelSize == 3)
|
|
|
|
{
|
|
|
|
for (; i <= widthCN - VEC_LINE4; i += VEC_LINE4)
|
|
|
|
{
|
|
|
|
v_float32 v_srcPtr0 = vx_load(srcPtr + i);
|
|
|
|
v_float32 v_srcPtr1 = vx_load(srcPtr + VEC_LINE + i) ;
|
|
|
|
v_float32 v_srcPtr2 = vx_load(srcPtr + VEC_LINE * 2 + i);
|
|
|
|
v_float32 v_srcPtr3 = vx_load(srcPtr + VEC_LINE * 3 + i);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_float32 v_sumVal0 = v_add(v_add(v_add(v_srcPtr0, v_srcPtr0), vx_load(srcPtr + i - CN)), vx_load(srcPtr + i + CN));
|
|
|
|
v_float32 v_sumVal1 = v_add(v_add(v_add(v_srcPtr1, v_srcPtr1), vx_load(srcPtr + VEC_LINE + i - CN)), vx_load(srcPtr + VEC_LINE + i + CN));
|
|
|
|
v_float32 v_sumVal2 = v_add(v_add(v_add(v_srcPtr2, v_srcPtr2), vx_load(srcPtr + VEC_LINE * 2 + i - CN)), vx_load(srcPtr + VEC_LINE * 2 + i + CN));
|
|
|
|
v_float32 v_sumVal3 = v_add(v_add(v_add(v_srcPtr3, v_srcPtr3), vx_load(srcPtr + VEC_LINE * 3 + i - CN)), vx_load(srcPtr + VEC_LINE * 3 + i + CN));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + i, v_mul(v_sumVal0, v_mulVal));
|
|
|
|
v_store(dstPtr + i + VEC_LINE, v_mul(v_sumVal1, v_mulVal));
|
|
|
|
v_store(dstPtr + i + VEC_LINE * 2, v_mul(v_sumVal2, v_mulVal));
|
|
|
|
v_store(dstPtr + i + VEC_LINE * 3, v_mul(v_sumVal3, v_mulVal));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
for (; i <= widthCN - VEC_LINE; i += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_float32 v_srcPtr = vx_load(srcPtr + i);
|
2023-09-19 13:52:42 +08:00
|
|
|
v_float32 v_sumVal = v_add(v_add(v_add(v_srcPtr, v_srcPtr), vx_load(srcPtr + i - CN)), vx_load(srcPtr + i + CN));
|
|
|
|
v_store(dstPtr + i, v_mul(v_sumVal, v_mulVal));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const ushort * kx = kVec.data() + kernelSize/2;
|
|
|
|
v_float32 k0 = vx_setall_f32((float)(kx[0]));
|
|
|
|
|
|
|
|
srcPtr += i;
|
|
|
|
for( ; i <= widthCN - VEC_LINE; i += VEC_LINE, srcPtr += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_float32 v_src = vx_load(srcPtr);
|
|
|
|
v_float32 s0;
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_mul(v_src, k0);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
int k = 1, j = CN;
|
|
|
|
for (; k <= kernelSize / 2 - 1; k += 2, j += 2 * CN)
|
|
|
|
{
|
|
|
|
v_float32 k1 = vx_setall_f32((float)kx[k]);
|
|
|
|
v_float32 k2 = vx_setall_f32((float)kx[k + 1]);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_add(s0, v_mul(v_add(vx_load(srcPtr - j), vx_load(srcPtr + j)), k1));
|
|
|
|
s0 = v_add(s0, v_mul(v_add(vx_load(srcPtr - j - CN), vx_load(srcPtr + j + CN)), k2));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
if( k < kernelSize / 2 + 1 )
|
|
|
|
{
|
|
|
|
v_float32 k1 = vx_setall_f32((float)kx[k]);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
s0 = v_add(s0, v_mul(v_add(vx_load(srcPtr - j), vx_load(srcPtr + j)), k1));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + i, v_mul(s0, v_mulVal));
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, typename TBuf>
|
|
|
|
inline int opComputeDiff(const T*& , TBuf*& , const int , const int)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opComputeDiff<uchar, int>(const uchar*& srcPtr, int*& diff0, const int w, const int CNR1)
|
|
|
|
{
|
|
|
|
int index = 0;
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE_8 = VTraits<v_uint8>::vlanes();
|
|
|
|
const int VEC_LINE_32 = VTraits<v_int32>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
for (; index <= w - VEC_LINE_8; index += VEC_LINE_8, diff0+=VEC_LINE_8, srcPtr+=VEC_LINE_8)
|
|
|
|
{
|
|
|
|
v_uint16 x0l, x0h, x1l, x1h;
|
|
|
|
v_expand(vx_load(srcPtr + CNR1), x0l, x0h);
|
|
|
|
v_expand(vx_load(srcPtr), x1l, x1h);
|
|
|
|
|
|
|
|
v_int32 y0, y1, y2, y3;
|
2023-09-19 13:52:42 +08:00
|
|
|
v_expand(v_sub(v_reinterpret_as_s16(x0l), v_reinterpret_as_s16(x1l)), y0, y1);
|
|
|
|
v_expand(v_sub(v_reinterpret_as_s16(x0h), v_reinterpret_as_s16(x1h)), y2, y3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(diff0, y0);
|
|
|
|
v_store(diff0 + VEC_LINE_32, y1);
|
|
|
|
v_store(diff0 + VEC_LINE_32 * 2, y2);
|
|
|
|
v_store(diff0 + VEC_LINE_32 * 3, y3);
|
|
|
|
}
|
|
|
|
return index;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
template<typename T, typename TBuf>
|
|
|
|
class ParallelStackBlurRow : public ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
ParallelStackBlurRow (const Mat &_src, Mat &_dst, int _radius): src(_src), dst(_dst) ,radius(_radius)
|
|
|
|
{
|
|
|
|
width= dst.cols;
|
|
|
|
wm = width - 1;
|
|
|
|
mulVal = 1.0f / ((radius + 1) * (radius + 1));
|
|
|
|
CN = src.channels();
|
|
|
|
}
|
|
|
|
|
|
|
|
~ParallelStackBlurRow() {}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The idea is as follows:
|
|
|
|
* The stack can be understood as a sliding window of length kernel size.
|
|
|
|
* The sliding window moves one element at a time from left to right.
|
|
|
|
* The sumIn stores the elements added to the stack each time,
|
|
|
|
* and sumOut stores the subtracted elements. Every time stack moves, stack, sumIn and sumOut are updated.
|
|
|
|
* The dst will be calculated using the following formula:
|
|
|
|
* dst[i] = (stack + sumIn - sumOut) / stack_num
|
|
|
|
* In the Row direction, in order to avoid redundant computation,
|
|
|
|
* we save the sumIn - sumOut as a diff vector.
|
|
|
|
* So the new formula is:
|
|
|
|
* dst[i] = (stack + diff[i]) / stack_num.
|
|
|
|
* In practice, we use multiplication and bit shift right to simulate integer division:
|
|
|
|
* dst[i] = ((stack + diff[i]) * mulVal) >> shrVal.
|
|
|
|
* */
|
|
|
|
virtual void operator ()(const Range& range) const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
const int kernelSize = 2 * radius + 1;
|
|
|
|
|
|
|
|
if (kernelSize <= 9 && width > kernelSize) // Special branch for small kernel
|
|
|
|
{
|
|
|
|
std::vector<ushort> kVec;
|
|
|
|
for (int i = 0; i < kernelSize; i++)
|
|
|
|
{
|
|
|
|
if (i <= radius)
|
|
|
|
kVec.push_back(ushort(i + 1));
|
|
|
|
else
|
|
|
|
kVec.push_back(ushort(2 * radius - i + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
const ushort * kx = kVec.data() + kernelSize/2;
|
|
|
|
for (int row = range.start; row < range.end; row++)
|
|
|
|
{
|
|
|
|
const T* srcPtr = src.ptr<T>(row);
|
|
|
|
T* dstPtr = dst.ptr<T>(row);
|
|
|
|
TBuf sumVal;
|
|
|
|
|
|
|
|
// init
|
|
|
|
for (int i = 0; i < radius; i++)
|
|
|
|
{
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
{
|
|
|
|
sumVal = 0;
|
|
|
|
for (int k = 0; k < kernelSize; k++)
|
|
|
|
{
|
|
|
|
int index = std::max(k - radius + i, 0);
|
|
|
|
sumVal += (TBuf)srcPtr[index * CN + ci] * (TBuf)kVec[k];
|
|
|
|
}
|
|
|
|
dstPtr[i*CN + ci] = (T)(sumVal * mulVal);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int widthCN = (width - radius) * CN;
|
|
|
|
|
|
|
|
// middle
|
|
|
|
int wc = radius * CN;
|
2023-09-19 13:52:42 +08:00
|
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
2022-09-28 17:47:32 +08:00
|
|
|
wc = opRow<T>(srcPtr, dstPtr, kVec, mulVal, radius, CN, widthCN);
|
|
|
|
#endif
|
|
|
|
for (; wc < widthCN; wc++)
|
|
|
|
{
|
|
|
|
sumVal = srcPtr[wc] * kx[0];
|
|
|
|
for (int k = 1; k <= radius; k++)
|
|
|
|
sumVal += ((TBuf)(srcPtr[wc + k * CN])+(TBuf)(srcPtr[wc - k * CN])) * (TBuf)kx[k];
|
|
|
|
dstPtr[wc] = (T)(sumVal * mulVal);
|
|
|
|
}
|
|
|
|
|
|
|
|
// tail
|
|
|
|
for (int i = wc / CN; i < width; i++)
|
|
|
|
{
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
{
|
|
|
|
sumVal = 0;
|
|
|
|
for (int k = 0; k < kernelSize; k++)
|
|
|
|
{
|
|
|
|
int index = std::min(k - radius + i, wm);
|
|
|
|
sumVal += (TBuf)srcPtr[index * CN + ci] * (TBuf)kVec[k];
|
|
|
|
}
|
|
|
|
dstPtr[i*CN + ci] = (T)(sumVal * mulVal);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2024-04-30 18:07:21 +08:00
|
|
|
size_t bufSize = CN * (width + kernelSize) * sizeof(TBuf) + 2 * CN * sizeof(TBuf);
|
2022-09-28 17:47:32 +08:00
|
|
|
AutoBuffer<uchar> _buf(bufSize + 16);
|
|
|
|
uchar* bufptr = alignPtr(_buf.data(), 16);
|
|
|
|
TBuf* diffVal = (TBuf*)bufptr;
|
|
|
|
TBuf* sum = diffVal+CN;
|
|
|
|
TBuf* diff = sum + CN;
|
|
|
|
|
|
|
|
const int CNR1 = CN * (radius + 1);
|
|
|
|
const int widthCN = (width - radius - 1) * CN;
|
|
|
|
|
|
|
|
for (int row = range.start; row < range.end; row++)
|
|
|
|
{
|
|
|
|
memset(bufptr, 0, bufSize);
|
|
|
|
|
|
|
|
const T* srcPtr = src.ptr<T>(row);
|
|
|
|
T* dstPtr = dst.ptr<T>(row);
|
|
|
|
|
|
|
|
int radiusMul = (radius + 2) * (radius + 1) / 2;
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
sum[ci] += (TBuf)srcPtr[ci] * radiusMul;
|
|
|
|
|
|
|
|
// compute diff
|
|
|
|
const T* srcPtr0 = srcPtr;
|
|
|
|
|
|
|
|
// init
|
|
|
|
for (int i = 0; i < radius; i++)
|
|
|
|
{
|
|
|
|
if (i < wm) srcPtr0 += CN;
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
{
|
|
|
|
diff[i*CN + ci] = (TBuf)srcPtr0[ci] - (TBuf)srcPtr[ci];
|
|
|
|
diffVal[ci] += diff[i*CN + ci];
|
|
|
|
sum[ci] += srcPtr0[ci] * (radius - i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// middle
|
|
|
|
auto diff0 = diff + radius * CN;
|
|
|
|
int index = 0;
|
2023-09-19 13:52:42 +08:00
|
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
2022-09-28 17:47:32 +08:00
|
|
|
index = opComputeDiff(srcPtr, diff0, widthCN, CNR1);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (; index < widthCN; index++, diff0++, srcPtr++)
|
|
|
|
diff0[0] = (TBuf)(srcPtr[CNR1]) - (TBuf)(srcPtr[0]);
|
|
|
|
|
|
|
|
// tails
|
|
|
|
srcPtr0 = src.ptr<T>(row) + index;
|
|
|
|
const T* srcPtr1 = src.ptr<T>(row) + (width - 1) * CN;
|
|
|
|
int dist = width - index/CN;
|
|
|
|
for (int r = 0; r < radius; r++, diff0 += CN)
|
|
|
|
{
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
diff0[ci] = (TBuf)(srcPtr1[ci]) - (TBuf)(srcPtr0[ci]);
|
|
|
|
|
|
|
|
if (dist >= r)
|
|
|
|
{
|
|
|
|
srcPtr0 += CN;
|
|
|
|
dist--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
srcPtr = src.ptr<T>(row);
|
|
|
|
diff0 = diff + radius * CN;
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
diffVal[ci] += diff0[ci];
|
|
|
|
diff0 += CN;
|
|
|
|
|
|
|
|
if (CN == 1)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < width; i++, diff0 ++, dstPtr ++, srcPtr ++)
|
|
|
|
{
|
|
|
|
*(dstPtr) = saturate_cast<T>((sum[0] * mulVal));
|
|
|
|
sum[0] += diffVal[0];
|
|
|
|
diffVal[0] += (diff0[0] - diff0[-CNR1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (CN == 3)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < width; i++, diff0 += CN, dstPtr += CN, srcPtr += CN)
|
|
|
|
{
|
|
|
|
*(dstPtr + 0) = saturate_cast<T>((sum[0] * mulVal));
|
|
|
|
*(dstPtr + 1) = saturate_cast<T>((sum[1] * mulVal));
|
|
|
|
*(dstPtr + 2) = saturate_cast<T>((sum[2] * mulVal));
|
|
|
|
|
|
|
|
sum[0] += diffVal[0];
|
|
|
|
sum[1] += diffVal[1];
|
|
|
|
sum[2] += diffVal[2];
|
|
|
|
|
|
|
|
diffVal[0] += (diff0[0] - diff0[0 - CNR1]);
|
|
|
|
diffVal[1] += (diff0[1] - diff0[1 - CNR1]);
|
|
|
|
diffVal[2] += (diff0[2] - diff0[2 - CNR1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (CN == 4)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < width; i++, diff0 += CN, dstPtr += CN, srcPtr += CN)
|
|
|
|
{
|
|
|
|
*(dstPtr + 0) = saturate_cast<T>((sum[0] * mulVal));
|
|
|
|
*(dstPtr + 1) = saturate_cast<T>((sum[1] * mulVal));
|
|
|
|
*(dstPtr + 2) = saturate_cast<T>((sum[2] * mulVal));
|
|
|
|
*(dstPtr + 3) = saturate_cast<T>((sum[3] * mulVal));
|
|
|
|
|
|
|
|
sum[0] += diffVal[0];
|
|
|
|
sum[1] += diffVal[1];
|
|
|
|
sum[2] += diffVal[2];
|
|
|
|
sum[3] += diffVal[3];
|
|
|
|
|
|
|
|
diffVal[0] += (diff0[0] - diff0[0 - CNR1]);
|
|
|
|
diffVal[1] += (diff0[1] - diff0[1 - CNR1]);
|
|
|
|
diffVal[2] += (diff0[2] - diff0[2 - CNR1]);
|
|
|
|
diffVal[3] += (diff0[3] - diff0[3 - CNR1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
for (; i < width; i++, diff0 += CN, dstPtr += CN, srcPtr += CN)
|
|
|
|
{
|
|
|
|
for (int ci = 0; ci < CN; ci++)
|
|
|
|
{
|
|
|
|
*(dstPtr + ci) = saturate_cast<T>((sum[ci] * mulVal));
|
|
|
|
sum[ci] += diffVal[ci];
|
|
|
|
diffVal[ci] += (diff0[ci] - diff0[ci - CNR1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
const Mat &src;
|
|
|
|
Mat &dst;
|
|
|
|
int radius;
|
|
|
|
int width;
|
|
|
|
int wm;
|
|
|
|
int CN;
|
|
|
|
float mulVal;
|
|
|
|
};
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
2022-09-28 17:47:32 +08:00
|
|
|
template<typename T, typename TBuf>
|
|
|
|
inline int opColumn(const T* , T* , T* , TBuf* , TBuf* , TBuf* , const float ,
|
|
|
|
const int , const int , const int , const int , const int )
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opColumn<float, float>(const float* srcPtr, float* dstPtr, float* stack, float* sum, float* sumIn,
|
|
|
|
float* sumOut, const float mulVal, const int , const int ,
|
|
|
|
const int widthLen, const int ss, const int sp1)
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
v_float32 v_mulVal = vx_setall_f32(mulVal);
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE = VTraits<v_float32>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
const int VEC_LINE4 = 4 * VEC_LINE;
|
|
|
|
|
|
|
|
auto stackStartPtr = stack + ss * widthLen;
|
|
|
|
auto stackSp1Ptr = stack + sp1 * widthLen;
|
|
|
|
|
|
|
|
for (;k <= widthLen - VEC_LINE4; k += VEC_LINE4)
|
|
|
|
{
|
|
|
|
v_float32 v_sum0 = vx_load(sum + k);
|
|
|
|
v_float32 v_sum1 = vx_load(sum + VEC_LINE + k);
|
|
|
|
v_float32 v_sum2 = vx_load(sum + VEC_LINE * 2 + k);
|
|
|
|
v_float32 v_sum3 = vx_load(sum + VEC_LINE * 3 + k);
|
|
|
|
|
|
|
|
v_float32 v_sumOut0 = vx_load(sumOut + k);
|
|
|
|
v_float32 v_sumOut1 = vx_load(sumOut + VEC_LINE + k);
|
|
|
|
v_float32 v_sumOut2 = vx_load(sumOut + VEC_LINE * 2 + k);
|
|
|
|
v_float32 v_sumOut3 = vx_load(sumOut + VEC_LINE * 3 + k);
|
|
|
|
|
|
|
|
v_float32 v_sumIn0 = vx_load(sumIn + k);
|
|
|
|
v_float32 v_sumIn1 = vx_load(sumIn + VEC_LINE + k);
|
|
|
|
v_float32 v_sumIn2 = vx_load(sumIn + VEC_LINE * 2 + k);
|
|
|
|
v_float32 v_sumIn3 = vx_load(sumIn + VEC_LINE * 3+ k);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + k, v_mul(v_sum0, v_mulVal));
|
|
|
|
v_store(dstPtr + VEC_LINE + k, v_mul(v_sum1, v_mulVal));
|
|
|
|
v_store(dstPtr + VEC_LINE * 2 + k, v_mul(v_sum2, v_mulVal));
|
|
|
|
v_store(dstPtr + VEC_LINE * 3 + k, v_mul(v_sum3, v_mulVal));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sum0 = v_sub(v_sum0, v_sumOut0);
|
|
|
|
v_sum1 = v_sub(v_sum1, v_sumOut1);
|
|
|
|
v_sum2 = v_sub(v_sum2, v_sumOut2);
|
|
|
|
v_sum3 = v_sub(v_sum3, v_sumOut3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_sub(v_sumOut0, vx_load(stackStartPtr + k));
|
|
|
|
v_sumOut1 = v_sub(v_sumOut1, vx_load(stackStartPtr + VEC_LINE + k));
|
|
|
|
v_sumOut2 = v_sub(v_sumOut2, vx_load(stackStartPtr + VEC_LINE * 2 + k));
|
|
|
|
v_sumOut3 = v_sub(v_sumOut3, vx_load(stackStartPtr + VEC_LINE * 3 + k));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_float32 v_srcPtr0 = vx_load(srcPtr + k);
|
|
|
|
v_float32 v_srcPtr1 = vx_load(srcPtr + VEC_LINE + k);
|
|
|
|
v_float32 v_srcPtr2 = vx_load(srcPtr + VEC_LINE * 2 + k);
|
|
|
|
v_float32 v_srcPtr3 = vx_load(srcPtr + VEC_LINE * 3 + k);
|
|
|
|
|
|
|
|
v_store(stackStartPtr + k, v_srcPtr0);
|
|
|
|
v_store(stackStartPtr + VEC_LINE + k, v_srcPtr1);
|
|
|
|
v_store(stackStartPtr + VEC_LINE * 2 + k, v_srcPtr2);
|
|
|
|
v_store(stackStartPtr + VEC_LINE * 3 + k, v_srcPtr3);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_add(v_sumIn0, v_srcPtr0);
|
|
|
|
v_sumIn1 = v_add(v_sumIn1, v_srcPtr1);
|
|
|
|
v_sumIn2 = v_add(v_sumIn2, v_srcPtr2);
|
|
|
|
v_sumIn3 = v_add(v_sumIn3, v_srcPtr3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(sum + k, v_add(v_sum0, v_sumIn0));
|
|
|
|
v_store(sum + VEC_LINE + k, v_add(v_sum1, v_sumIn1));
|
|
|
|
v_store(sum + VEC_LINE * 2 + k, v_add(v_sum2, v_sumIn2));
|
|
|
|
v_store(sum + VEC_LINE * 3 + k, v_add(v_sum3, v_sumIn3));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_srcPtr0 = vx_load(stackSp1Ptr + k);
|
|
|
|
v_srcPtr1 = vx_load(stackSp1Ptr + VEC_LINE + k);
|
|
|
|
v_srcPtr2 = vx_load(stackSp1Ptr + VEC_LINE * 2 + k);
|
|
|
|
v_srcPtr3 = vx_load(stackSp1Ptr + VEC_LINE * 3 + k);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_add(v_sumOut0, v_srcPtr0);
|
|
|
|
v_sumOut1 = v_add(v_sumOut1, v_srcPtr1);
|
|
|
|
v_sumOut2 = v_add(v_sumOut2, v_srcPtr2);
|
|
|
|
v_sumOut3 = v_add(v_sumOut3, v_srcPtr3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumOut + k, v_sumOut0);
|
|
|
|
v_store(sumOut + VEC_LINE + k, v_sumOut1);
|
|
|
|
v_store(sumOut + VEC_LINE * 2 + k, v_sumOut2);
|
|
|
|
v_store(sumOut + VEC_LINE * 3 + k, v_sumOut3);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_sub(v_sumIn0, v_srcPtr0);
|
|
|
|
v_sumIn1 = v_sub(v_sumIn1, v_srcPtr1);
|
|
|
|
v_sumIn2 = v_sub(v_sumIn2, v_srcPtr2);
|
|
|
|
v_sumIn3 = v_sub(v_sumIn3, v_srcPtr3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumIn + k, v_sumIn0);
|
|
|
|
v_store(sumIn + VEC_LINE + k, v_sumIn1);
|
|
|
|
v_store(sumIn + VEC_LINE * 2 + k, v_sumIn2);
|
|
|
|
v_store(sumIn + VEC_LINE * 3 + k, v_sumIn3);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (;k <= widthLen - VEC_LINE; k += VEC_LINE)
|
|
|
|
{
|
|
|
|
v_float32 v_sum = vx_load(sum + k);
|
|
|
|
v_float32 v_sumOut = vx_load(sumOut + k);
|
|
|
|
v_float32 v_sumIn = vx_load(sumIn + k);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + k, v_mul(v_sum, v_mulVal));
|
|
|
|
v_sum = v_sub(v_sum, v_sumOut);
|
|
|
|
v_sumOut = v_sub(v_sumOut, vx_load(stackStartPtr + k));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_float32 v_srcPtr = vx_load(srcPtr + k);
|
|
|
|
v_store(stackStartPtr + k, v_srcPtr);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn = v_add(v_sumIn, v_srcPtr);
|
|
|
|
v_store(sum + k, v_add(v_sum, v_sumIn));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_srcPtr = vx_load(stackSp1Ptr + k);
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut = v_add(v_sumOut, v_srcPtr);
|
2022-09-28 17:47:32 +08:00
|
|
|
v_store(sumOut + k, v_sumOut);
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn = v_sub(v_sumIn, v_srcPtr);
|
2022-09-28 17:47:32 +08:00
|
|
|
v_store(sumIn + k, v_sumIn);
|
|
|
|
}
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opColumn<uchar, int>(const uchar* srcPtr, uchar* dstPtr, uchar* stack, int* sum, int* sumIn,
|
|
|
|
int* sumOut, const float , const int mulValTab, const int shrValTab,
|
|
|
|
const int widthLen, const int ss, const int sp1)
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
if (mulValTab != 0 && shrValTab != 0)
|
|
|
|
{
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE_8 = VTraits<v_uint8>::vlanes();
|
|
|
|
const int VEC_LINE_32 = VTraits<v_int32>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
v_int32 v_mulVal = vx_setall_s32(mulValTab);
|
|
|
|
|
|
|
|
auto stackStartPtr = stack + ss * widthLen;
|
|
|
|
auto stackSp1Ptr = stack + sp1 * widthLen;
|
|
|
|
|
|
|
|
for (;k <= widthLen - VEC_LINE_8; k += VEC_LINE_8)
|
|
|
|
{
|
|
|
|
v_int32 v_sum0, v_sum1, v_sum2, v_sum3;
|
|
|
|
v_int32 v_sumIn0, v_sumIn1, v_sumIn2, v_sumIn3;
|
|
|
|
v_int32 v_sumOut0, v_sumOut1, v_sumOut2, v_sumOut3;
|
|
|
|
|
|
|
|
v_sum0 = vx_load(sum + k);
|
|
|
|
v_sum1 = vx_load(sum + k + VEC_LINE_32);
|
|
|
|
v_sum2 = vx_load(sum + k + VEC_LINE_32 * 2);
|
|
|
|
v_sum3 = vx_load(sum + k + VEC_LINE_32 * 3);
|
|
|
|
|
|
|
|
v_sumIn0 = vx_load(sumIn + k);
|
|
|
|
v_sumIn1 = vx_load(sumIn + k + VEC_LINE_32);
|
|
|
|
v_sumIn2 = vx_load(sumIn + k + VEC_LINE_32 * 2);
|
|
|
|
v_sumIn3 = vx_load(sumIn + k + VEC_LINE_32 * 3);
|
|
|
|
|
|
|
|
v_sumOut0 = vx_load(sumOut + k);
|
|
|
|
v_sumOut1 = vx_load(sumOut + k + VEC_LINE_32);
|
|
|
|
v_sumOut2 = vx_load(sumOut + k + VEC_LINE_32 * 2);
|
|
|
|
v_sumOut3 = vx_load(sumOut + k + VEC_LINE_32 * 3);
|
|
|
|
|
|
|
|
v_store(dstPtr + k,
|
|
|
|
v_pack(
|
2023-09-19 13:52:42 +08:00
|
|
|
v_reinterpret_as_u16(v_pack(v_shr(v_mul(v_sum0, v_mulVal), shrValTab), v_shr(v_mul(v_sum1, v_mulVal), shrValTab))),
|
|
|
|
v_reinterpret_as_u16(v_pack(v_shr(v_mul(v_sum2, v_mulVal), shrValTab), v_shr(v_mul(v_sum3, v_mulVal), shrValTab)))));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sum0 = v_sub(v_sum0, v_sumOut0);
|
|
|
|
v_sum1 = v_sub(v_sum1, v_sumOut1);
|
|
|
|
v_sum2 = v_sub(v_sum2, v_sumOut2);
|
|
|
|
v_sum3 = v_sub(v_sum3, v_sumOut3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_uint16 x0l, x0h;
|
|
|
|
v_int32 v_ss0, v_ss1, v_ss2, v_ss3;
|
|
|
|
|
|
|
|
v_expand(vx_load(stackStartPtr + k), x0l, x0h);
|
|
|
|
v_expand(v_reinterpret_as_s16(x0l), v_ss0, v_ss1);
|
|
|
|
v_expand(v_reinterpret_as_s16(x0h), v_ss2, v_ss3);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_sub(v_sumOut0, v_ss0);
|
|
|
|
v_sumOut1 = v_sub(v_sumOut1, v_ss1);
|
|
|
|
v_sumOut2 = v_sub(v_sumOut2, v_ss2);
|
|
|
|
v_sumOut3 = v_sub(v_sumOut3, v_ss3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_expand(vx_load(srcPtr + k), x0l, x0h);
|
|
|
|
v_expand(v_reinterpret_as_s16(x0l), v_ss0, v_ss1);
|
|
|
|
v_expand(v_reinterpret_as_s16(x0h), v_ss2, v_ss3);
|
|
|
|
|
|
|
|
memcpy(stackStartPtr + k,srcPtr + k, VEC_LINE_8 * sizeof (uchar));
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_add(v_sumIn0, v_ss0);
|
|
|
|
v_sumIn1 = v_add(v_sumIn1, v_ss1);
|
|
|
|
v_sumIn2 = v_add(v_sumIn2, v_ss2);
|
|
|
|
v_sumIn3 = v_add(v_sumIn3, v_ss3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(sum + k, v_add(v_sum0, v_sumIn0));
|
|
|
|
v_store(sum + VEC_LINE_32 + k, v_add(v_sum1, v_sumIn1));
|
|
|
|
v_store(sum + VEC_LINE_32 * 2 + k, v_add(v_sum2, v_sumIn2));
|
|
|
|
v_store(sum + VEC_LINE_32 * 3 + k, v_add(v_sum3, v_sumIn3));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_expand(vx_load(stackSp1Ptr + k), x0l, x0h);
|
|
|
|
v_expand(v_reinterpret_as_s16(x0l), v_ss0, v_ss1);
|
|
|
|
v_expand(v_reinterpret_as_s16(x0h), v_ss2, v_ss3);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_add(v_sumOut0, v_ss0);
|
|
|
|
v_sumOut1 = v_add(v_sumOut1, v_ss1);
|
|
|
|
v_sumOut2 = v_add(v_sumOut2, v_ss2);
|
|
|
|
v_sumOut3 = v_add(v_sumOut3, v_ss3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumOut + k, v_sumOut0);
|
|
|
|
v_store(sumOut + VEC_LINE_32 + k, v_sumOut1);
|
|
|
|
v_store(sumOut + VEC_LINE_32 * 2 + k, v_sumOut2);
|
|
|
|
v_store(sumOut + VEC_LINE_32 * 3 + k, v_sumOut3);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_sub(v_sumIn0, v_ss0);
|
|
|
|
v_sumIn1 = v_sub(v_sumIn1, v_ss1);
|
|
|
|
v_sumIn2 = v_sub(v_sumIn2, v_ss2);
|
|
|
|
v_sumIn3 = v_sub(v_sumIn3, v_ss3);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumIn + k, v_sumIn0);
|
|
|
|
v_store(sumIn + VEC_LINE_32 + k, v_sumIn1);
|
|
|
|
v_store(sumIn + VEC_LINE_32 * 2 + k, v_sumIn2);
|
|
|
|
v_store(sumIn + VEC_LINE_32 * 3 + k, v_sumIn3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opColumn<short, int>(const short* srcPtr, short* dstPtr, short* stack, int* sum, int* sumIn,
|
|
|
|
int* sumOut, const float , const int mulValTab, const int shrValTab,
|
|
|
|
const int widthLen, const int ss, const int sp1)
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
if (mulValTab != 0 && shrValTab != 0)
|
|
|
|
{
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE_16 = VTraits<v_int16>::vlanes();
|
|
|
|
const int VEC_LINE_32 = VTraits<v_int32>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
v_int32 v_mulVal = vx_setall_s32(mulValTab);
|
|
|
|
|
|
|
|
auto stackStartPtr = stack + ss * widthLen;
|
|
|
|
auto stackSp1Ptr = stack + sp1 * widthLen;
|
|
|
|
for (;k <= widthLen - VEC_LINE_16; k += VEC_LINE_16)
|
|
|
|
{
|
|
|
|
v_int32 v_sum0, v_sum1;
|
|
|
|
v_int32 v_sumIn0, v_sumIn1;
|
|
|
|
v_int32 v_sumOut0, v_sumOut1;
|
|
|
|
|
|
|
|
v_sum0 = vx_load(sum + k);
|
|
|
|
v_sum1 = vx_load(sum + k + VEC_LINE_32);
|
|
|
|
|
|
|
|
v_sumIn0 = vx_load(sumIn + k);
|
|
|
|
v_sumIn1 = vx_load(sumIn + k + VEC_LINE_32);
|
|
|
|
|
|
|
|
v_sumOut0 = vx_load(sumOut + k);
|
|
|
|
v_sumOut1 = vx_load(sumOut + k + VEC_LINE_32);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + k,v_pack(v_shr(v_mul(v_sum0, v_mulVal), shrValTab), v_shr(v_mul(v_sum1, v_mulVal), shrValTab)));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sum0 = v_sub(v_sum0, v_sumOut0);
|
|
|
|
v_sum1 = v_sub(v_sum1, v_sumOut1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_int32 v_ss0, v_ss1;
|
|
|
|
v_expand(vx_load(stackStartPtr + k), v_ss0, v_ss1);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_sub(v_sumOut0, v_ss0);
|
|
|
|
v_sumOut1 = v_sub(v_sumOut1, v_ss1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_expand(vx_load(srcPtr + k), v_ss0, v_ss1);
|
|
|
|
memcpy(stackStartPtr + k,srcPtr + k, VEC_LINE_16 * sizeof (short));
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_add(v_sumIn0, v_ss0);
|
|
|
|
v_sumIn1 = v_add(v_sumIn1, v_ss1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sum0 = v_add(v_sum0, v_sumIn0);
|
|
|
|
v_sum1 = v_add(v_sum1, v_sumIn1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sum + k, v_sum0);
|
|
|
|
v_store(sum + VEC_LINE_32 + k, v_sum1);
|
|
|
|
|
|
|
|
v_expand(vx_load(stackSp1Ptr + k), v_ss0, v_ss1);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_add(v_sumOut0, v_ss0);
|
|
|
|
v_sumOut1 = v_add(v_sumOut1, v_ss1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumOut + k, v_sumOut0);
|
|
|
|
v_store(sumOut + VEC_LINE_32 + k, v_sumOut1);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_sub(v_sumIn0, v_ss0);
|
|
|
|
v_sumIn1 = v_sub(v_sumIn1, v_ss1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumIn + k, v_sumIn0);
|
|
|
|
v_store(sumIn + VEC_LINE_32 + k, v_sumIn1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
inline int opColumn<ushort, int>(const ushort* srcPtr, ushort* dstPtr, ushort* stack, int* sum, int* sumIn,
|
|
|
|
int* sumOut, const float , const int mulValTab, const int shrValTab,
|
|
|
|
const int widthLen, const int ss, const int sp1)
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
if (mulValTab != 0 && shrValTab != 0)
|
|
|
|
{
|
2023-09-19 13:52:42 +08:00
|
|
|
const int VEC_LINE_16 = VTraits<v_uint16>::vlanes();
|
|
|
|
const int VEC_LINE_32 = VTraits<v_int32>::vlanes();
|
2022-09-28 17:47:32 +08:00
|
|
|
v_uint32 v_mulVal = vx_setall_u32((uint32_t)mulValTab);
|
|
|
|
|
|
|
|
auto stackStartPtr = stack + ss * widthLen;
|
|
|
|
auto stackSp1Ptr = stack + sp1 * widthLen;
|
|
|
|
for (;k <= widthLen - VEC_LINE_16; k += VEC_LINE_16)
|
|
|
|
{
|
|
|
|
v_int32 v_sum0, v_sum1;
|
|
|
|
v_int32 v_sumIn0, v_sumIn1;
|
|
|
|
v_int32 v_sumOut0, v_sumOut1;
|
|
|
|
|
|
|
|
v_sum0 = vx_load(sum + k);
|
|
|
|
v_sum1 = vx_load(sum + k + VEC_LINE_32);
|
|
|
|
|
|
|
|
v_sumIn0 = vx_load(sumIn + k);
|
|
|
|
v_sumIn1 = vx_load(sumIn + k + VEC_LINE_32);
|
|
|
|
|
|
|
|
v_sumOut0 = vx_load(sumOut + k);
|
|
|
|
v_sumOut1 = vx_load(sumOut + k + VEC_LINE_32);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_store(dstPtr + k, v_pack(v_shr(v_mul(v_reinterpret_as_u32(v_sum0), v_mulVal), shrValTab), v_shr(v_mul(v_reinterpret_as_u32(v_sum1), v_mulVal), shrValTab)));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sum0 = v_sub(v_sum0, v_sumOut0);
|
|
|
|
v_sum1 = v_sub(v_sum1, v_sumOut1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_uint32 v_ss0, v_ss1;
|
|
|
|
v_expand(vx_load(stackStartPtr + k), v_ss0, v_ss1);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_sub(v_sumOut0, v_reinterpret_as_s32(v_ss0));
|
|
|
|
v_sumOut1 = v_sub(v_sumOut1, v_reinterpret_as_s32(v_ss1));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_expand(vx_load(srcPtr + k), v_ss0, v_ss1);
|
|
|
|
|
|
|
|
memcpy(stackStartPtr + k,srcPtr + k, VEC_LINE_16 * sizeof (ushort));
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_add(v_sumIn0, v_reinterpret_as_s32(v_ss0));
|
|
|
|
v_sumIn1 = v_add(v_sumIn1, v_reinterpret_as_s32(v_ss1));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sum0 = v_add(v_sum0, v_sumIn0);
|
|
|
|
v_sum1 = v_add(v_sum1, v_sumIn1);
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sum + k, v_sum0);
|
|
|
|
v_store(sum + VEC_LINE_32 + k, v_sum1);
|
|
|
|
|
|
|
|
v_expand(vx_load(stackSp1Ptr + k), v_ss0, v_ss1);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumOut0 = v_add(v_sumOut0, v_reinterpret_as_s32(v_ss0));
|
|
|
|
v_sumOut1 = v_add(v_sumOut1, v_reinterpret_as_s32(v_ss1));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumOut + k, v_sumOut0);
|
|
|
|
v_store(sumOut + VEC_LINE_32 + k, v_sumOut1);
|
|
|
|
|
2023-09-19 13:52:42 +08:00
|
|
|
v_sumIn0 = v_sub(v_sumIn0, v_reinterpret_as_s32(v_ss0));
|
|
|
|
v_sumIn1 = v_sub(v_sumIn1, v_reinterpret_as_s32(v_ss1));
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
v_store(sumIn + k, v_sumIn0);
|
|
|
|
v_store(sumIn + VEC_LINE_32 + k, v_sumIn1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
template<typename T, typename TBuf>
|
|
|
|
class ParallelStackBlurColumn:
|
|
|
|
public ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
ParallelStackBlurColumn (const Mat & _src, Mat &_dst, int _radius):src(_src), dst(_dst) ,radius(_radius)
|
|
|
|
{
|
|
|
|
CN = src.channels();
|
|
|
|
widthElem = CN * src.cols;
|
|
|
|
height = src.rows;
|
|
|
|
hm = src.rows - 1;
|
|
|
|
mulVal = 1.0f / ((radius + 1)*(radius + 1));
|
|
|
|
if (radius <= STACKBLUR_MAX_RADIUS)
|
|
|
|
{
|
|
|
|
shrValTab = stackblurShr[radius];
|
|
|
|
mulValTab = stackblurMul[radius];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
shrValTab = 0;
|
|
|
|
mulValTab = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
~ParallelStackBlurColumn() {}
|
|
|
|
|
|
|
|
virtual void operator ()(const Range& range) const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
if (radius == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
const int kernelSize = 2 * radius + 1;
|
|
|
|
int widthImg = std::min(range.end, src.cols * CN);
|
|
|
|
int widthLen = widthImg - range.start;
|
|
|
|
|
|
|
|
size_t bufSize = 3 * widthLen * sizeof(TBuf) + kernelSize * widthLen * sizeof(T);
|
|
|
|
|
|
|
|
AutoBuffer<uchar> _buf(bufSize + 16);
|
|
|
|
uchar* bufptr = alignPtr(_buf.data(), 16);
|
|
|
|
|
|
|
|
TBuf* sum = (TBuf *)bufptr;
|
|
|
|
TBuf* sumIn = sum + widthLen;
|
|
|
|
TBuf* sumOut = sumIn + widthLen;
|
|
|
|
T* stack = (T* )(sumOut + widthLen);
|
|
|
|
|
|
|
|
memset(bufptr, 0, bufSize);
|
|
|
|
|
|
|
|
const T* srcPtr =dst.ptr<T>() + range.start;
|
|
|
|
|
|
|
|
for (int i = 0; i <= radius; i++)
|
|
|
|
{
|
|
|
|
for (int k = 0; k < widthLen; k++)
|
|
|
|
{
|
|
|
|
stack[i * widthLen + k] = *(srcPtr + k);
|
|
|
|
sum[k] += *(srcPtr + k) * (i + 1);
|
|
|
|
sumOut[k] += *(srcPtr + k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 1; i <= radius; i++)
|
|
|
|
{
|
|
|
|
if (i <= hm) srcPtr += widthElem;
|
|
|
|
for (int k = 0; k < widthLen; k++)
|
|
|
|
{
|
|
|
|
T tmp = *(srcPtr + k);
|
|
|
|
stack[(i + radius) * widthLen + k] = tmp;
|
|
|
|
sum[k] += tmp * (radius - i + 1);
|
|
|
|
sumIn[k] += tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int sp = radius;
|
|
|
|
int yp = radius;
|
|
|
|
|
|
|
|
if (yp > hm) yp = hm;
|
|
|
|
|
|
|
|
T* dstPtr = dst.ptr<T>() + range.start;
|
|
|
|
srcPtr = dst.ptr<T>(yp) + range.start;
|
|
|
|
int stackStart = 0;
|
|
|
|
|
|
|
|
for(int i = 0; i < height; i++)
|
|
|
|
{
|
|
|
|
stackStart = sp + kernelSize - radius;
|
|
|
|
if (stackStart >= kernelSize) stackStart -= kernelSize;
|
|
|
|
|
|
|
|
int sp1 = sp + 1;
|
2022-10-29 17:34:28 +08:00
|
|
|
if (sp1 >= kernelSize)
|
|
|
|
sp1 = 0;
|
2022-09-28 17:47:32 +08:00
|
|
|
|
|
|
|
if (yp < hm)
|
|
|
|
{
|
|
|
|
yp++;
|
|
|
|
srcPtr += widthElem;
|
|
|
|
}
|
|
|
|
|
|
|
|
int k = 0;
|
2023-09-19 13:52:42 +08:00
|
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
2022-09-28 17:47:32 +08:00
|
|
|
k = opColumn<T, TBuf>(srcPtr, dstPtr, stack, sum, sumIn, sumOut, mulVal, mulValTab, shrValTab,
|
|
|
|
widthLen, stackStart, sp1);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (; k < widthLen; k++)
|
|
|
|
{
|
|
|
|
*(dstPtr + k) = static_cast<T>(sum[k] * mulVal);
|
|
|
|
sum[k] -= sumOut[k];
|
|
|
|
sumOut[k] -= stack[stackStart * widthLen + k];
|
|
|
|
|
|
|
|
stack[stackStart * widthLen + k] = *(srcPtr + k);
|
|
|
|
sumIn[k] += *(srcPtr + k);
|
|
|
|
sum[k] += sumIn[k];
|
|
|
|
|
|
|
|
sumOut[k] += stack[sp1 * widthLen + k];
|
|
|
|
sumIn[k] -= stack[sp1 * widthLen + k];
|
|
|
|
}
|
|
|
|
|
|
|
|
dstPtr += widthElem;
|
|
|
|
++sp;
|
2022-10-29 17:34:28 +08:00
|
|
|
if (sp >= kernelSize)
|
|
|
|
sp = 0;
|
2022-09-28 17:47:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
const Mat &src;
|
|
|
|
Mat &dst;
|
|
|
|
int radius;
|
|
|
|
int CN;
|
|
|
|
int height;
|
|
|
|
int widthElem;
|
|
|
|
int hm;
|
|
|
|
float mulVal;
|
|
|
|
int mulValTab;
|
|
|
|
int shrValTab;
|
|
|
|
};
|
|
|
|
|
|
|
|
void stackBlur(InputArray _src, OutputArray _dst, Size ksize)
|
|
|
|
{
|
|
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_Assert(!_src.empty());
|
|
|
|
|
|
|
|
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 &&
|
|
|
|
ksize.height > 0 && ksize.height % 2 == 1 );
|
|
|
|
|
|
|
|
int radiusH = ksize.height / 2;
|
|
|
|
int radiusW = ksize.width / 2;
|
|
|
|
|
|
|
|
int stype = _src.type(), sdepth = _src.depth();
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
|
|
|
|
if (ksize.width == 1)
|
|
|
|
{
|
|
|
|
_src.copyTo(_dst);
|
|
|
|
|
|
|
|
if (ksize.height == 1)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
_dst.create( src.size(), stype);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
int numOfThreads = getNumThreads();
|
|
|
|
int widthElem = src.cols * src.channels();
|
|
|
|
|
|
|
|
if (dst.rows / numOfThreads < 3)
|
|
|
|
numOfThreads = std::max(1, dst.rows / 3);
|
|
|
|
|
|
|
|
if (sdepth == CV_8U)
|
|
|
|
{
|
|
|
|
if (ksize.width != 1)
|
|
|
|
parallel_for_(Range(0, src.rows), ParallelStackBlurRow<uchar, int>(src, dst, radiusW), numOfThreads);
|
|
|
|
if (ksize.height != 1)
|
|
|
|
parallel_for_(Range(0, widthElem), ParallelStackBlurColumn<uchar, int>(dst, dst, radiusH), numOfThreads);
|
|
|
|
}
|
|
|
|
else if (sdepth == CV_16S)
|
|
|
|
{
|
|
|
|
if (ksize.width != 1)
|
|
|
|
parallel_for_(Range(0, src.rows), ParallelStackBlurRow<short, int>(src, dst, radiusW), numOfThreads);
|
|
|
|
if (ksize.height != 1)
|
|
|
|
parallel_for_(Range(0, widthElem), ParallelStackBlurColumn<short, int>(dst, dst, radiusH), numOfThreads);
|
|
|
|
}
|
|
|
|
else if (sdepth == CV_16U)
|
|
|
|
{
|
|
|
|
if (ksize.width != 1)
|
|
|
|
parallel_for_(Range(0, src.rows), ParallelStackBlurRow<ushort, int>(src, dst, radiusW), numOfThreads);
|
|
|
|
if (ksize.height != 1)
|
|
|
|
parallel_for_(Range(0, widthElem), ParallelStackBlurColumn<ushort, int>(dst, dst, radiusH), numOfThreads);
|
|
|
|
}
|
|
|
|
else if (sdepth == CV_32F)
|
|
|
|
{
|
|
|
|
if (ksize.width != 1)
|
|
|
|
parallel_for_(Range(0, src.rows), ParallelStackBlurRow<float, float>(src, dst, radiusW), numOfThreads);
|
|
|
|
if (ksize.height != 1)
|
|
|
|
parallel_for_(Range(0, widthElem), ParallelStackBlurColumn<float, float>(dst, dst, radiusH), numOfThreads);
|
|
|
|
}
|
|
|
|
else
|
2022-10-29 17:34:28 +08:00
|
|
|
CV_Error(Error::StsNotImplemented,
|
2022-09-28 17:47:32 +08:00
|
|
|
("Unsupported input format in StackBlur, the supported formats are: CV_8U, CV_16U, CV_16S and CV_32F."));
|
|
|
|
}
|
|
|
|
} //namespace
|